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SOLUTION:

Problem 1:

a) The angle α between x′
1 and x′

2 is given by the angle between r and x1:

cosα =
r.e1

|r| =
1√
2

=

√
2

2
, (1)

where e1 = x1

|x1| = (1, 0). Then

α =
π

4
= 45o. (2)

b) We know that ǫ′1 = (1, 0), and ǫ′2 = 1√
2
(1, 1) then

gij = ǭ′i.ǭ
′
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′
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′
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′
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)
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√

2
2√

2
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)

. (3)

c) The magnitude of r′i is given by (r′ir
′i)1/2 then

r′ir
′i = gijr

′jr′i = g11r
′1r′1 + g12r

′2r′1 + g21r
′1r′2 + g22r

′2r′2 = 1 +
√

2 +
√

2 + 4 = 5 + 2
√

2, (4)

and |r′i| =
√√

2 +
√

2 + 4 = 5 + 2
√

2.

d)

T ′ij = r′ir′j =

(

r′1r′1 r′1r′2

r′2r′1 r′2r′2

)

=

(

1 2
2 4

)

. (5)

Then,

T ′i
j = gjkT ′ik =

(

g11T
′11 + g12T

′12 g21T
′11 + g22T

′12
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′22
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=
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√
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2
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√
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. (6)

Problem 2:

a)

[(A × B) × (C× D)]i = ǫijk(A × B)j(C × D)k = ǫijkǫjrsA
rBsǫktuCtDu = ǫijkǫktuǫjrsA

rBsCtDu =

ǫkijǫktuǫjrsA
rBsCtDu = (δi

tδ
j
u − δi

uδj
t)ǫjrsA

rBsCtDu = ǫjrsA
rBsCiDj − ǫjrsA

rBsCjDi =



ArǫrsjB
sDjCi − ArǫrsjB

sCjDi = Ar(B × D)rC
i − Ar(B× C)rD

i =

[A.(B × D)]Ci − [A.(B× C)]Di. (7)

Thus we see that the expression is a vector and Eq.(7) displays the component i of the vector. Then in vector, rather
than tensor notation Eq.(7) becomes:

[(A × B) × (C× D)] = [A.(B × D)]C − [A.(B × C)]D. (8)

b) In part (a) we saw that [(A × B) × (C × D)] is a tensor of rank 1.

c) We see that [(A × B) × (C× D)] is a pseudotensor because in Eq.(7) we found that

[(A × B) × (C × D)]i = ǫijkǫktuǫjrsA
rBsCtDu = Ei. (9)

We see that upon an inversion Ei will transform as a pseudovector i.e.

E′i = (detI)
∂x′i

∂xj
Ej , (10)

where (detI) = −1 is the determinant of the inversion which is the way in which a pseudovector such as ǫijk transforms
upon an inversion. Since there is an odd number of Levi-Civita tensors in Eq.(9) upon an inversion we’ll have
(detI)3 = (detI) = −1.

d) If the 4 vectors are coplanar [(A×B)× (C×D)] = 0. We can see this geometrically because the cross product
of A and B will be a vector perpendicular to the plane to which the 4 vectors belong. The same will be the case for
the cross product of C and D. Then the cross product of the two parallel vectors will have to be zero.

In tensor notation it is also clear from Eq.(9), if we work in a system in which x1 and x2 define the plane in which
the vectors are and x3 is an axis perpendicular to that plane, then the indices j and k will have to label the direction
perpendicular to the plane if ArBsCtDu is non-zero. But this means that j = k and thus ǫijk = ǫijj = 0.

Problem 3:

a) Since the boundary conditions are defined of flat surfaces we will work in cartesian coordinates. Using the
solution to Laplace’s equation in rectangular coordinates found in class and the boundary conditions we propose the
following expression for the potential:

ΦV (x, y) =

∞
∑

n=1

An sin
nπy

a
e−

nπx
a , (11)

where we have used that since Φ(x, y = 0) = 0 the solution along y has to be of the form sinαy and since Φ(x, y =
a) = 0, the α = αn = nπy

a with n ranging from 1 to ∞. Finally we have used that since Φ(x, y) = 0 when x → ∞
then along x the potential has to vanish exponentially as e−αnx = e−

nπx
a .

Now we need to use the last boundary condition Φ(x = 0, y) = V to obtain An. Then at x = 0 Eq.(11) becomes

V =

∞
∑

n=1

An sin
nπy

a
. (12)

Now let’s multiply both sides of the equation by sin mπy
a and integrate over y in the interval (0, a). We obtain:

V

∫ a

0

sin
mπy

a
dy =

∞
∑

n=1

An

∫ a

0

sin
mπy

a
sin

nπy

a
dy. (13)



Eq.(13) becomes

−V
a

mπ
cos

mπy

a
|a0 =

∞
∑

n=1

An
a

2
δmn. (14)

−V
a

mπ
[(−1)m − 1] = Am

a

2
. (15)

Then

Am = −V
2

mπ
[(−1)m − 1] (16)

We see that Am = 0 if m is even and

Am =
4V

mπ
, (17)

if m is odd. Then the solution to the problem is

ΦV (x, y) =
4V

π

∞
∑

j=0

1

2j + 1
sin

(2j + 1)πy

a
e−

(2j+1)πx

a . (18)

b) Now let’s consider the problem of a charge q located at (a, a/2) inside the given volume with Φ = 0 on all the
surfaces. Due to the presence of the charge that violates Laplace’s equation, we will have to divide the space in two
regions and propose two different solutions that will have to be matched at the plane surface x = a that contains q.
Thus we propose the following solutions:

For region I defined by 0 ≤ x ≤ a and 0 ≤ y ≤ a:

ΦI
q(x, y) =

∞
∑

n=1

An sin
nπy

a
sinh

nπx

a
, (19)

where we have used that since Φ(x, y = 0) = 0 the solution along y has to be of the form sinαy and since Φ(x, y =
a) = 0, the α = αn = nπy

a with n ranging from 1 to ∞ and that since Φ(x = 0, y) = 0 the potential has to be
proportional to sinhnπx

a . The constant An will be determined from the boundary conditions at x = a.
For region II defined by x ≥ a and 0 ≤ y ≤ a:

ΦII
q (x, y) =

∞
∑

n=1

Bn sin
nπy

a
e−

nπx
a , (20)

where we have used that since Φ(x, y = 0) = 0 the solution along y has to be of the form sinαy and since Φ(x, y =
a) = 0, the α = αn = nπy

a with n ranging from 1 to ∞ and that since Φ(x, y) = 0 when x → ∞ the potential has to
vanish exponentially as e−αnx = e−

nπx
a . The constant Bn will be determined from the boundary conditions at x = a.

At x = a the potential has to be continuous then

ΦI
q |x=a = ΦII

q |x=a, (21)

and also the normal component of the electric field En = −∂Φ
∂n = −∂Φ(x,y)

∂x , since the normal is along the x direction
in this case, has a jump equal to σ/ǫ0 where σ is the density of charge on the surface defined by x = a. In our case
σ = qδ(y − a/2). Then we obtain the equation

−
∂ΦII

q (x, y)

∂x
|x=a +

∂ΦI
q(x, y)

∂x
|x=a =

q

ǫ0
δ(y − a

2
). (22)

From Eq.(20) we obtain

Ansinhnπ = Bne−nπ. (23)



Then,

An = Bn
e−nπ

sinhnπ
. (24)

Using Eq.(24) in Eq.(22) we obtain:

∞
∑

n=1

nπ

a
Bn sin

nπy

a
e−nπ +

∞
∑

n=1

nπ

a
Bn

e−nπ

sinhnπ
sin

nπy

a
coshnπ =

q

ǫ0
δ(y − a

2
). (25)

∞
∑

n=1

nπ

a
Bn sin

nπy

a
e−nπ(1 + cotanhnπ) =

q

ǫ0
δ(y − a

2
). (26)

Now let’s multiply both sides of the equation by sin mπy
a and integrate over y in the interval (0, a). We obtain:

mπ

2
Bme−mπ(1 + cotanhmπ) =

q

ǫ0
sin

mπ

2
. (27)

Since e−mπ(1 + cotanhmπ) = 1/sinhnπ and sin mπ
2 is non-zero only if m is odd we find that Bm = 0 for m even and

for m odd

Bm =
2q

mπǫ0
sin

mπ

2
sinhmπ, (28)

or relabeling m = 2j + 1

B2j+1 =
2q

(2j + 1)πǫ0
(−1)j sinh(2j + 1)π. (29)

Then, replacing Eq.(29) in Eq.(24) we find that

A2j+1 =
2q

(2j + 1)πǫ0
(−1)je−(2j+1)π. (30)

Then replacing Eq.(30) in Eq.(19) and Eq.(29) in Eq.(20) we obtain that

ΦI
q(x, y) =

2q

πǫ0

∞
∑

j=0

(−1)j

2j + 1
e−(2j+1)π sin

(2j + 1)πy

a
sinh

(2j + 1)πx

a
, (31)

and

ΦII
q (x, y) =

2q

πǫ0

∞
∑

j=0

(−1)j

2j + 1
sinh(2j + 1)π sin

(2j + 1)πy

a
e−

(2j+1)πx

a . (31)

Both equations can be written as

Φq(x, y) =
2q

πǫ0

∞
∑

j=0

(−1)j

2j + 1
sin

(2j + 1)πy

a
sinh

(2j + 1)πx<

a
e−

(2j+1)πx>
a , (32)

where x< (x>) is the smaller (larger) between x and a.

c) To solve this problem we can use the superposition principle combining the solutions to parts (a) and (b) so that

Φ(x, y) = ΦV (x, y) + Φq(x, y). (33)

Problem 4:



a) Since the covariant metric tensor is used to lower indices and we need to lower two indices we obtain

Gµν = gµαgνρG
αρ. (34)

b) The tensor Gµ
µ has rank 0 since there are no free indices. It should be zero because it is the trace of the tensor

G which is traceless, but we can also see this from the explicit expression:

Gµ
µ = gµαGαµ = g00G

00 + g11G
11 + g22G

22 + g33G
33 = 0, (35)

where we have used that gij is diagonal .

c) The tensor GµνGαρ has rank 4. For the element requested we have:

G13G
12 = g1αg3βGαβG12 = g11g33G

13G12 = (−1)(−1)Hy(−Hz) = −HyHz, (36)

where we have used that since gij is diagonal we only have contributions different from zero if α = 1 and β = 3.

d) The tensor GµνGνρ has rank 2 because only two of the four indices are not contracted. For the element requested
we have:

G1νGν2 = g1αgνβGαβGν2 = g11gνβG1βGν2 = g11g33G
13G32 = (−1)(−1)HyHx = HyHx, (37)

where we have used that given the form of G the only values of ν that will give us a non-zero element of the form Gν2

are ν = 1 or 3 and the only values of β that will give us a non-zero element of the form G1β are β = 2 or 3. Then,
since gνβ is diagonal we need ν = β which means that ν = β = 3 provides the only non-zero contrinution.


