Homework #11

Problem 3:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions
that was obtained in class:
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where y- (y<) is the larger (smaller) between y and y'.
In the problem we are considering the density of charge is

p(a'sy’) = 00b(y’ = b/2), (2)
where 6(y" —b/2) =1 for vy’ <b/2 and y = 0 for y’ > b/2.
The potential inside the volume defined by 0 < x < a and 0 < y < b is given by:
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Since &5 = 0 on all the surfaces the surface integral does not contribute. Let us then calculate the volume integral.

Because of Eq.(2) we obtain:
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Let’s first calculate the potential ®(x,y) for y > b/2. In this case y« = ¢’ and y~ = y in Eq.(1) and we obtain:
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Let’s evaluate the two integrals:
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Eq.(6) equals ( ) if n is odd and it vanishes if n is even, while for the second integral we have:
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Thus, for y > b/2 we obtain:
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Now let’s calculate the potential ®(x,y) for y < b/2. In this case we have to split the integral over y’ in two pieces
so that for ¢y’ < y we will use y« =y’ and y~ =y in Eq.(1) and for ¢’ > y we will use y« =y and y~ =3’ in Eq.(1):
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The integral over 2’ is the same as in Eq.(6) while for the integrals on y’ we obtain:
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Thus, for y < b/2 we obtain:
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