Midterm Exam

P571
October 2, 2012

SOLUTION:

a) We need to express $\hat{\mathbf{e}}_{i}^{\prime}$ in cartesian coordinates.

$$
\begin{equation*}
\hat{\mathbf{e}}_{1}^{\prime}=\left(\cos 30^{\circ},-\sin 30^{\circ}\right)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{e}}_{2}^{\prime}=(0,1) \tag{2}
\end{equation*}
$$

b) In order to find the vectors $\hat{\mathbf{e}}^{\prime i}$ that form the contravariant basis we have to use that

$$
\begin{equation*}
\hat{\mathbf{e}}^{\prime i} \cdot \hat{\mathbf{e}}_{j}^{\prime}=\delta^{i}{ }_{j} \tag{3}
\end{equation*}
$$

Let's propose that $\hat{\mathbf{e}}^{\prime 1}=(a, b)$ and $\hat{\mathbf{e}}^{\prime 2}=(c, d)$. Then using the values obtained in Eq.(1) and (2) in Eq.(3) we can solve for a, b, c, and d.

$$
0=\hat{\mathbf{e}}^{\prime 1} \cdot \hat{\mathbf{e}}_{2}^{\prime}=b
$$

then $b=0$,

$$
1=\hat{\mathbf{e}}^{\prime 1} \cdot \hat{\mathbf{e}}_{1}^{\prime}=\frac{a \sqrt{3}}{2}
$$

then $a=\frac{2 \sqrt{3}}{3}$. Then

$$
\begin{equation*}
\hat{\mathbf{e}}^{\prime 1}=\left(\frac{2 \sqrt{3}}{3}, 0\right) \tag{4}
\end{equation*}
$$

and

$$
1=\hat{\mathbf{e}}^{\prime 2} \cdot \hat{\mathbf{e}}_{2}^{\prime}=d
$$

then $d=1$,

$$
0=\hat{\mathbf{e}}^{\prime 2} \cdot \hat{\mathbf{e}}_{1}^{\prime}=\frac{c \sqrt{3}}{2}-\frac{1}{2}
$$

then $c=\frac{\sqrt{3}}{3}$. Then

$$
\begin{equation*}
\hat{\mathbf{e}}^{\prime 2}=\left(\frac{\sqrt{3}}{3}, 1\right) \tag{5}
\end{equation*}
$$

c) In S^{\prime} a generic vector $r^{\prime i}$ has coordinates $x^{\prime i}$ and in S a generic vector r^{i} has coordinates x^{i}. From the figure we see that

$$
\begin{equation*}
x^{1}=x^{11} \cos \beta=x^{\prime 1} \cos 30^{\circ}=x^{\prime 1} \frac{\sqrt{3}}{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}=x^{\prime 2}-x^{\prime 1} \sin \beta=-x^{\prime 1} \sin 30^{\circ}+x^{\prime 2}=-x^{\prime 1} \frac{1}{2}+x^{\prime 2} \tag{7}
\end{equation*}
$$

d) The easiest way to do this is remembering that a generic vector \mathbf{r}^{\prime} can be written in terms of its covariant components in the contravariant basis as:

$$
\begin{equation*}
\mathbf{r}^{\prime}=x_{1}^{\prime} \hat{\mathbf{e}}^{1}+x_{2}^{\prime} \hat{\mathbf{e}}^{\prime 2} \tag{8}
\end{equation*}
$$

and that it also can be written in terms of its contravariant components in the covariant basis then we have that

$$
\begin{equation*}
\mathbf{r}^{\prime}=x_{1}^{\prime} \hat{\mathbf{e}}^{\prime 1}+x_{2}^{\prime} \hat{\mathbf{e}}^{\prime 2}=x^{\prime 1} \hat{\mathbf{e}}_{1}^{\prime}+x^{\prime 2} \hat{\mathbf{e}}^{\prime}{ }_{2} \tag{9}
\end{equation*}
$$

Then using the cartesian expressions for $\hat{\mathbf{e}}_{i}^{\prime}$ and $\hat{\mathbf{e}}^{\prime i}$ found in parts (a) and (b) we obtain:

$$
x_{1}^{\prime}\left(\frac{2 \sqrt{3}}{3}, 0\right)+x_{2}^{\prime}\left(\frac{\sqrt{3}}{3}, 1\right)=x^{\prime 1}\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)+x^{\prime 2}(0,1)
$$

which gives us two equations:

$$
\begin{equation*}
x_{1}^{\prime} \frac{2 \sqrt{3}}{3}+x_{2}^{\prime} \frac{\sqrt{3}}{3}=x^{\prime 1} \frac{\sqrt{3}}{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}^{\prime}=-\frac{x^{\prime 1}}{2}+x^{\prime 2} \tag{11}
\end{equation*}
$$

Replacing (11) in (10) we obtain:

$$
\begin{equation*}
x_{1}^{\prime}=x^{1}-x^{\prime 2} \frac{1}{2} \tag{12}
\end{equation*}
$$

e) Now we simply have to use Eq.(6) and (7). For p I obtain:

$$
\begin{equation*}
p^{i}=\left(2 \frac{\sqrt{3}}{2},-2 \frac{1}{2}+3\right)=(\sqrt{3}, 2) \tag{13}
\end{equation*}
$$

and for \mathbf{k}

$$
\begin{equation*}
k^{i}=\left(-2 \frac{\sqrt{3}}{2}, 2 \frac{1}{2}+2\right)=(-\sqrt{3}, 3) \tag{14}
\end{equation*}
$$

f) Now we just need to plug the contravariant components of vectors p in Eqs.(11) and (12):

$$
\begin{equation*}
p_{i}^{\prime}=\left(2-\frac{3}{2},-\frac{2}{2}+3\right)=\left(\frac{1}{2}, 2\right) \tag{15}
\end{equation*}
$$

and for vector k :

$$
\begin{equation*}
k_{i}^{\prime}=\left(-2-\frac{2}{2}, \frac{2}{2}+2\right)=(-3,3) \tag{16}
\end{equation*}
$$

g) We know that in S

$$
\begin{equation*}
\mathbf{p . k}=p_{i} k^{i}=p_{i} k_{i}=p k \cos \alpha \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\alpha=\cos ^{-1} \frac{\mathbf{p . k}}{p k} \tag{18}
\end{equation*}
$$

Let's calculate the absolute values:

$$
\begin{equation*}
p=\sqrt{3+4}=\sqrt{7} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
k=\sqrt{3+9}=2 \sqrt{3} . \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\alpha=\cos ^{-1}\left(\frac{-3+6}{2 \sqrt{21}}\right)=\cos ^{-1}\left(\frac{3}{2 \sqrt{21}}\right)=70.89^{\circ} \tag{21}
\end{equation*}
$$

h) Now I have to repeat the same calculation but in S^{\prime} where

$$
\begin{equation*}
\mathbf{p}^{\prime} \cdot \mathbf{k}^{\prime}=p_{i}^{\prime} k^{\prime i}=p^{\prime} k^{\prime} \cos \alpha^{\prime} \tag{22}
\end{equation*}
$$

Then

$$
\begin{equation*}
\alpha^{\prime}=\cos ^{-1} \frac{p_{i}^{\prime} k^{\prime i}}{p^{\prime} k^{\prime}} \tag{23}
\end{equation*}
$$

Let's calculate the absolute values. Now I need to use the expression given for the contravariant components and the covariant components found in part (f):

$$
\begin{equation*}
p^{\prime}=\sqrt{\frac{1}{2} 2+2 \times 3}=\sqrt{7} \tag{24}
\end{equation*}
$$

which equals p as expected since the magnitude of a vector is a scalar and

$$
\begin{equation*}
k^{\prime}=\sqrt{(-3)(-2)+3 \times 2}=2 \sqrt{3}, \tag{25}
\end{equation*}
$$

which, as expected, equals the magnitude k. Then

$$
\begin{equation*}
\alpha^{\prime}=\cos ^{-1}\left(\frac{-1+4}{2 \sqrt{21}}\right)=\cos ^{-1}\left(\frac{3}{2 \sqrt{21}}\right)=70.89^{\circ} . \tag{26}
\end{equation*}
$$

We see that $\alpha^{\prime}=\alpha$ since the angle between the two vectors is a scalar.
i) Since at each point $\left(x_{1}, x_{2}\right)$ the function Φ provides a scalar value we see that Φ is a scalar function, i.e., a tensor of rank 0 .
j) All we need to do is to write Φ in terms of the contravariant variables in S^{\prime}. Thus, using Eq. (6) and (7) we obtain

$$
\begin{equation*}
\Phi^{\prime}\left(x^{\prime 1}, x^{\prime 2}\right)=\left(x^{\prime 1} \frac{\sqrt{3}}{2}\right)^{2}-\left(-x^{\prime 1} \frac{1}{2}+x^{\prime 2}\right)=\frac{3}{4}\left(x^{\prime 1}\right)^{2}+\frac{x^{\prime 1}}{2}-x^{\prime 2} \tag{27}
\end{equation*}
$$

k) Using the contravarian coordinates of $p^{\prime i}$ provided I obtain:

$$
\begin{equation*}
\Phi^{\prime}(2,3)=\frac{3}{4}(2)^{2}+\frac{2}{2}-3=3+1-3=1 \tag{28}
\end{equation*}
$$

l) Using the cartesian coordinates of p^{i} obtained in (e):

$$
\begin{equation*}
\Phi(\sqrt{3}, 2)=3-2=1 \tag{29}
\end{equation*}
$$

which is the same result obtained in (k) because the function is a scalar.
m) Now we need to calculate $\partial_{i} \Phi$.

$$
\begin{equation*}
\partial_{i} \Phi=\left(\frac{\partial \Phi}{\partial x_{1}}, \frac{\partial \Phi}{\partial x_{2}}\right)=\left(2 x_{1},-1\right) \tag{30}
\end{equation*}
$$

n) The gradient of the scalar function Φ is a vector and thus, it is a tensor of rank 1 .
o) Now we need to calculate $\partial_{i}^{\prime} \Phi^{\prime}$, i.e., the gradient of the function in S^{\prime}. The easiest way is to use the expression for the transformed function that we obtained in (j), then:

$$
\begin{equation*}
\partial_{i}^{\prime} \Phi^{\prime}=\left(\frac{\partial \Phi^{\prime}}{\partial x^{\prime 1}}, \frac{\partial \Phi^{\prime}}{\partial x^{\prime 2}}\right)=\left(\frac{3}{2} x^{\prime 1}+\frac{1}{2},-1\right) \tag{31}
\end{equation*}
$$

Notice that the coordinates obtained in Eq.(31) covariant in S', i.e., it means that

$$
\begin{equation*}
\partial_{i}^{\prime} \Phi^{\prime}=\left(\frac{3}{2} x^{\prime 1}+\frac{1}{2}\right) \hat{\mathbf{e}}^{\prime 1}-\hat{\mathbf{e}}^{\prime 2} \tag{32}
\end{equation*}
$$

p) Using the result obtained in (m) and the result obtained in (e) for the coordinates of p^{i} in S we obtain

$$
\begin{equation*}
\partial_{i} \Phi(\sqrt{3}, 2)=(2 \sqrt{3},-1) \tag{33}
\end{equation*}
$$

q) Using the result obtained in (o) and the coordinates of $p^{\prime i}$ in S^{\prime} given in the problem we obtain

$$
\begin{equation*}
\partial_{i}^{\prime} \Phi^{\prime}(2,3)=\left(\frac{3}{2} 2+\frac{1}{2}\right) \hat{\mathbf{e}}^{1}-3 \hat{\mathbf{e}}^{\prime 2}=\left(\frac{7}{2}\right) \hat{\mathbf{e}}^{\prime 1}-\hat{\mathbf{e}}^{\prime 2} \tag{34}
\end{equation*}
$$

r) The norm of $\partial_{i} \Phi(\sqrt{3}, 2)$ in S is obtained as

$$
\begin{equation*}
\sqrt{\partial_{i} \Phi(\sqrt{3}, 2) \partial_{i} \Phi(\sqrt{3}, 2)}=\sqrt{12+1}=\sqrt{13} \tag{35}
\end{equation*}
$$

s) The norm of $\partial_{i}^{\prime} \Phi^{\prime}(2,3)$ in S^{\prime} is obtained as

$$
\begin{equation*}
\sqrt{\partial_{i}^{\prime} \Phi^{\prime}(2,3) \partial^{\prime i} \Phi^{\prime}(2,3)} \tag{36}
\end{equation*}
$$

I need to calculate the contravariant coordinates of $\partial^{\prime i} \Phi(\sqrt{3}, 2)$ so that we can write

$$
\begin{equation*}
\partial^{\prime i} \Phi^{\prime}\left(x^{\prime 1}=2, x^{\prime 2}=3\right)=a \hat{\mathbf{e}}_{1}^{\prime}+b \hat{\mathbf{e}}_{2}^{\prime} \tag{37}
\end{equation*}
$$

We know that as a vector

$$
\partial^{\prime i} \Phi^{\prime}\left(x^{\prime 1}, x^{\prime 2}\right)=\partial^{i} \Phi\left(x^{1}, x^{2}\right)
$$

which means that

$$
\begin{equation*}
a \hat{\mathbf{e}}_{1}^{\prime}+b \hat{\mathbf{e}}_{2}^{\prime}=2 \sqrt{3} \hat{\mathbf{e}}_{1}-\hat{\mathbf{e}}_{2} \tag{38}
\end{equation*}
$$

Using the expression for $\hat{\mathbf{e}}_{i}^{\prime}$ in the cartesian system S that we found in part (a) Eq.(38) becomes:

$$
\begin{equation*}
a\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)+b(0,1)=(2 \sqrt{3},-1) \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left.\left(a \frac{\sqrt{3}}{2},-\frac{a}{2}\right)+b\right)=(2 \sqrt{3},-1) \tag{40}
\end{equation*}
$$

and we obtain that $a=4$ and $b=1$ then,

$$
\begin{equation*}
\partial^{\prime i} \Phi^{\prime}(2,3)=4 \hat{\mathbf{e}}_{1}^{\prime}+\hat{\mathbf{e}}_{2}^{\prime} \tag{41}
\end{equation*}
$$

Now replacing in Eq.(36) we obtain:

$$
\begin{equation*}
\sqrt{\partial_{i}^{\prime} \Phi^{\prime}(2,3) \partial^{\prime \prime} \Phi^{\prime}(2,3)}=\sqrt{\frac{7}{2} 4+(-1)(1)}=\sqrt{14-1}=\sqrt{13} \tag{42}
\end{equation*}
$$

We see that the result is the same as the one obtained in (r) as expected since the norm of a vector is a scalar.
t) Now we need to construct the tensor $T^{i j}=p^{i} k^{j}$ in S. Thus, we use the coordinates for $p^{i}=(\sqrt{3}, 2)$ and $k^{j}=(-\sqrt{3}, 3)$ obtained in (d):

$$
T^{i j}=\left(\begin{array}{cc}
p^{1} k^{1} & p^{1} k^{2} \tag{43}\\
p^{2} k^{1} & p^{2} k^{2}
\end{array}\right)=\left(\begin{array}{cc}
-3 & 3 \sqrt{3} \\
-2 \sqrt{3} & 6
\end{array}\right)
$$

The trace of T is just $-3+6=3$.
u) The easiest way to do this is to use the covariant and contravariant coordinates of $p^{\prime i}$ and $k^{\prime j}$ given in the problem and calculated in part (f) which means that $p^{\prime i}=(2,3), k^{\prime j}=(-2,2), p_{i}^{\prime}=\left(\frac{1}{2}, 2\right)$ and $k_{j}^{\prime}=(-3,3)$ then:

$$
\begin{align*}
T^{\prime i} & =\left(\begin{array}{ll}
p^{\prime 1} k^{\prime 1} & p^{\prime 1} k^{\prime 2} \\
p^{\prime 2} k^{\prime 1} & p^{\prime 2} k^{\prime 2}
\end{array}\right)=\left(\begin{array}{cc}
-4 & 4 \\
-6 & 6
\end{array}\right) . \tag{44}\\
T_{i j}^{\prime} & =\left(\begin{array}{ll}
p_{1}^{\prime} k_{1}^{\prime} & p_{1}^{\prime} k_{2}^{\prime} \\
p_{2}^{\prime} k_{1}^{\prime} & p_{2}^{\prime} k_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
-\frac{3}{2} & \frac{3}{2} \\
-6 & 6
\end{array}\right) . \tag{45}\\
T_{i}^{\prime j} & =\left(\begin{array}{ll}
p_{1}^{\prime} k^{\prime 1} & p_{1}^{\prime} k^{\prime 2} \\
p_{2}^{\prime} k^{\prime 1} & p_{2}^{\prime} k^{\prime 2}
\end{array}\right)=\left(\begin{array}{ll}
-1 & 1 \\
-4 & 4
\end{array}\right) . \tag{46}\\
T^{\prime i}{ }_{j} & =\left(\begin{array}{ll}
p^{\prime 1} k_{1}^{\prime} & p^{\prime 1} k_{2}^{\prime} \\
p^{\prime 2} k_{1}^{\prime} & p^{\prime 2} k_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
-6 & 6 \\
-9 & 9
\end{array}\right) . \tag{47}
\end{align*}
$$

We see that the traces of $T^{\prime i j}, T_{i j}^{\prime}, T_{i}^{\prime j}$ and $T^{\prime i}{ }_{j}$ are $2,9 / 2,3$, and 3 . Only the traces of the mixed forms of the tensor have the same value as the trace of T in S. This is because these are the only traces that are tensors obtained from the contraction of the indices of T as $T_{i}^{\prime}{ }^{i}$ and $T^{\prime i}{ }_{i}$. The traces of $T^{\prime i j}, T_{i j}^{\prime}$ are not tensors.

