SOLUTION:

Problem 1:

a) We need to write in tensor form $\hat{n} \times \mathbf{a}=\mathbf{B}$.

$$
\begin{equation*}
\epsilon_{i j k} n^{j} a^{k}=B_{i} \tag{1}
\end{equation*}
$$

B_{i} is a pseudotensor of rank 1 because \hat{n} and a are vectors and $\epsilon_{i j k}$ is a pseudotensor.
b) Show that $(\hat{n} \times \mathbf{a}) \times \hat{n}=\mathbf{a}-(\mathbf{a} \cdot \hat{n}) \hat{n}$ using tensor notation:
$\epsilon^{r s t} B_{s} n_{t}=\epsilon^{r s t} \epsilon_{s u v} n^{u} a^{v} n_{t}=\epsilon^{s t r} B_{s} n_{t}=\epsilon^{r s t} \epsilon_{s u v} n^{u} a^{v} n_{t}==\left(\delta^{t}{ }_{u} \delta^{r}{ }_{v}-\delta^{t}{ }_{v} \delta^{r}{ }_{u}\right) n^{u} a^{v} n_{t}=n^{t} n_{t} a^{r}-a^{t} n_{t} n^{r}=a^{r}-a^{t} n_{t} n^{r}$,
which is $\mathbf{a}-(\mathbf{a} . \hat{n}) \hat{n}$.
c) Eq.(2) represents the component of a along the direction perpendicular to \hat{n} and it is shown in the figure below.

d) Let's calculate $\nabla \cdot \hat{n}$ in tensor notation:

$$
\begin{gather*}
\delta_{i}\left[\frac{x^{i}}{\left(x_{k} x^{k}\right)^{1 / 2}}\right]=\frac{\partial_{i} x^{i}\left(x_{k} x^{k}\right)^{1 / 2}-x^{i} \partial_{i}\left(x_{k} x^{k}\right)^{1 / 2}}{x_{k} x^{k}}= \\
\frac{3 r}{r^{2}}-\frac{x^{i}}{r^{2}} \frac{1}{2 r}\left(\partial_{i} x_{k} x^{k}+x_{k} \partial_{i} x^{k}\right)=\frac{3}{r}-\frac{x^{i}}{2 r^{3}}\left(\partial_{i} g_{k l} x^{l} x^{k}+x_{k} \delta_{i}^{k}\right)= \\
\frac{3}{r}-\frac{x^{i}}{2 r^{3}}\left(\delta_{i}^{l} g_{k l} x^{k}+x_{i}\right)=\frac{3}{r}-\frac{x^{i}}{2 r^{3}} 2 x_{i}=\frac{3}{r}-\frac{r^{2}}{r^{3}}=\frac{2}{r} . \tag{3}
\end{gather*}
$$

e) Now we need to calculate $r(\mathbf{a} . \nabla) \hat{n}$ using tensor notation:

$$
\begin{gather*}
r a^{i} \partial_{i} \frac{x^{j}}{\left(x_{k} x^{k}\right)^{1 / 2}}=r a^{i}\left[\frac{\partial_{i} x^{j} r}{r^{2}}-\frac{x^{j} \partial_{i}\left(x_{k} x^{k}\right)}{2 r^{3}}\right]= \\
r a^{i}\left[\frac{\delta_{i}^{j}}{r}-\frac{x^{j}}{2 r^{3}}\left(\partial_{i} x_{k} x^{k}+x_{k} \partial_{i} x^{k}\right)\right]= \\
r a^{i}\left[\frac{\delta_{i}^{j}}{r}-\frac{x^{j}}{2 r^{3}}\left(\partial_{i} g_{k l} x^{l} x^{k}+x_{k} \delta_{i}{ }^{k}\right)\right]= \\
r a^{i}\left[\frac{\delta_{i}^{j}}{r}-\frac{x^{j}}{2 r^{3}}\left(g_{k l} \delta_{i}^{l} x^{k}+x_{i}\right)\right]= \\
r a^{i}\left[\frac{\delta_{i}{ }^{j}}{r}-\frac{x^{j}}{2 r^{3}}\left(x_{i}+x_{i}\right)\right]= \\
a^{j}-a^{i} x_{i} \frac{x^{j}}{r^{2}}=a^{j}-a^{i} n_{i} n^{j} \tag{4}
\end{gather*}
$$

Problem 2:

a) It is a tensor of rank 0 because it arises from the contraction of two tensors of rank 1: X^{α} and U^{α}.
b)

$$
\begin{gather*}
X_{\alpha} X^{\alpha}=g_{\alpha \beta} X^{\beta} X^{\alpha}=X^{0} X^{0}-X^{1} X^{1}-X^{2} X^{2}-X^{3} X^{3}=1-1-0-1 / 4=-1 / 4 . \\
U_{\alpha} X^{\alpha}=g_{\alpha \beta} U^{\beta} X^{\alpha}=U^{0} X^{0}-U^{1} X^{1}-U^{2} X^{2}-U^{3} X^{3}=c\left(1 / 2-\sqrt{3} / 2-0-1 / 2=-\frac{\sqrt{3}}{2} c .\right. \tag{5}
\end{gather*}
$$

c) Let's calculate the denominator at the values of X and U provided::

$$
\begin{equation*}
\left[\frac{1}{c^{2}}\left(U_{\alpha} X^{\alpha}\right)^{2}-X_{\alpha} X^{\alpha}\right]^{3 / 2}=\left[\frac{1}{c^{2}} c^{2} \frac{3}{4}+\frac{1}{4}\right]^{3 / 2}=1 \tag{6}
\end{equation*}
$$

Then

$$
\begin{gather*}
E_{x}=-F^{01}=-\frac{q}{c}\left(X^{0} U^{1}-X^{1} U^{0}\right)=\frac{q}{2}(1-\sqrt{3}), \tag{7}\\
E_{y}=-F^{02}=-\frac{q}{c}\left(X^{0} U^{2}-X^{2} U^{0}\right)=-q \tag{8}\\
E_{z}=-F^{03}=-\frac{q}{c}\left(X^{0} U^{3}-X^{3} U^{0}\right)=\frac{-3 q}{4} \tag{9}\\
B_{x}=-F^{23}=-\frac{q}{c}\left(X^{2} U^{3}-X^{3} U^{2}\right)=\frac{q}{2} \tag{10}\\
B_{y}=F^{13}=\frac{q}{c}\left(X^{1} U^{3}-X^{3} U^{1}\right)=\frac{q}{4}(4-\sqrt{3}) \tag{11}\\
B_{z}=-F^{12}=-\frac{q}{c}\left(X^{1} U^{2}-X^{2} U^{1}\right)=-q \tag{12}
\end{gather*}
$$

d)

$$
\begin{equation*}
F^{\alpha \beta} F_{\alpha \beta}=2\left(B^{2}-E^{2}\right)=-\frac{q^{2}}{4} \tag{13}
\end{equation*}
$$

e)

$$
\begin{gather*}
X^{\prime \alpha}=M^{\alpha}{ }_{\beta} X^{\beta}=(\gamma-\beta \gamma,-\beta \gamma+\gamma, 0,1 / 2)=(0.71,0.71,0,1 / 2) \tag{14}\\
U^{\prime \alpha}=M^{\alpha}{ }_{\beta} U^{\beta}=c\left(\frac{\gamma}{2}-\beta \gamma \frac{\sqrt{3}}{2},-\frac{\beta \gamma}{2}+\frac{\gamma \sqrt{3}}{2}, 1,1\right)=c(0.224,0.7413,1,1) \tag{15}
\end{gather*}
$$

f)

$$
\begin{equation*}
E_{y}^{\prime}=-F^{\prime 02}=-\frac{q}{c}\left(X^{\prime 0} U^{\prime 2}-X^{\prime 2} U^{\prime 0}\right)=-0.71 q \tag{16}
\end{equation*}
$$

we see that $E^{\prime y} \neq E^{y}$ since it transforms like the component of a tensor of rank 2 .
g) No. This result will be the same since $F^{\alpha \beta} F_{\alpha \beta}$ is a tensor of rank 0 and thus it is the same in S and S^{\prime}.

Problem 3:

a) We need to solve Laplace's equation: $\nabla^{2} \Phi=0$.
b) We need to work in spherical coordinates since the boundary consitions are given on spherical surfaces. The potential will be given in terms of the Legendre polynomials $P_{l}(\cos \theta)$ since the problem has azimuthal symmetry and in terms of powers of r.
c) I propose

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta) \tag{17}
\end{equation*}
$$

We obtain A_{l} and B_{l} from the b.c. at $r=a$ and $r=b$. At $r=b$ the potential is $2 V_{0}$ then,

$$
\begin{equation*}
2 V_{0} P_{0}(\cos \theta)=\sum_{l=0}^{\infty}\left(A_{l} b^{l}+\frac{B_{l}}{b^{l+1}}\right) P_{l}(\cos \theta) \tag{18}
\end{equation*}
$$

where we have used that $1=P_{0}(x)$. Since Eq.(18) has to hold for each value of l separately we obtain that for $l=0$

$$
\begin{equation*}
A_{0}=2 V_{0}-\frac{B_{0}}{b} \tag{19}
\end{equation*}
$$

while for $l>0$

$$
\begin{equation*}
A_{l}=-\frac{B_{l}}{b^{2 l+1}} \tag{20}
\end{equation*}
$$

At $r=a$ the potential is $V_{0} \cos \theta=V_{0} P_{1}(\cos \theta)$ then

$$
\begin{equation*}
V_{0} P_{1}(\cos \theta)=\sum_{l=0}^{\infty}\left(A_{l} a^{l}+\frac{B_{l}}{a^{l+1}}\right) P_{l}(\cos \theta) \tag{21}
\end{equation*}
$$

For $l=0$ we obtain that

$$
\begin{equation*}
A_{0}+\frac{B_{0}}{a}=0 \tag{22}
\end{equation*}
$$

Plugging Eq.(19) in Eq.(22) and solving for B_{0} we obtain:

$$
\begin{equation*}
B_{0}=\frac{2 V_{0} a b}{a-b} \tag{23}
\end{equation*}
$$

and plugging Eq.(23) in Eq.(19) we obtain:

$$
\begin{equation*}
A_{0}=\frac{-2 V_{0} b}{a-b} \tag{24}
\end{equation*}
$$

For $l=1$ we obtain that plugging Eq.(20) in Eq.(21):

$$
\begin{equation*}
-\frac{B_{1} a}{b^{3}}+\frac{B_{1}}{a^{2}}=V_{0} \tag{25}
\end{equation*}
$$

Then,

$$
\begin{equation*}
B_{1}=\frac{V_{0} a^{2} b^{3}}{b^{3}-a^{3}} \tag{26}
\end{equation*}
$$

and plugging Eq.(26) in Eq.(20) we obtain:

$$
\begin{equation*}
A_{1}=\frac{-V_{0} a^{2}}{b^{3}-a^{3}} \tag{27}
\end{equation*}
$$

For $l>1$ we obtain that plugging Eq.(20) in Eq.(21):

$$
\begin{equation*}
-\frac{B_{l} a^{l}}{b^{2 l+1}}+\frac{B_{l}}{a^{l+1}}=0 \tag{28}
\end{equation*}
$$

Then,

$$
\begin{equation*}
B_{l}=0 \tag{29}
\end{equation*}
$$

and plugging Eq.(29) in Eq.(20) we obtain:

$$
\begin{equation*}
A_{l}=0 \tag{30}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\Phi(r, \theta)=-\frac{2 V_{0} b}{a-b}+\frac{2 V_{0} a b}{(a-b) r}-\frac{V_{0} a^{2} r}{b^{3}-a^{3}} \cos \theta+\frac{V_{0} a^{2} b^{3}}{\left(b^{3}-a^{3}\right) r^{2}} \cos \theta \tag{31}
\end{equation*}
$$

We see that when $a \rightarrow 0, \Phi(r, \theta)=-2 V_{0}$ which is the potential inside the shell of radius b at a uniform potential.
d) For $r>b$ we propose

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{l=0}^{\infty} \frac{C_{l}}{r^{l+1}} P_{l}(\cos \theta) \tag{32}
\end{equation*}
$$

At $r=b \Phi=2 V_{0}$ this means that

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{l=0}^{\infty} \frac{C_{l}}{b^{l+1}} P_{l}(\cos \theta)=2 V_{0} P_{0}(\cos \theta) \tag{33}
\end{equation*}
$$

Then,

$$
\begin{equation*}
C_{0}=2 V_{0} b \tag{34}
\end{equation*}
$$

and $C_{l}=0$ for $l>0$.Then,

$$
\begin{equation*}
\Phi(r, \theta)=\frac{2 V_{0} b}{r} \tag{35}
\end{equation*}
$$

e) To find the surface charge density $\sigma(\theta)$ at $r=b$ we know that

$$
\begin{equation*}
-\left.\frac{\partial \Phi^{I I}}{\partial r}\right|_{r=b}+\left.\frac{\partial \Phi^{I}}{\partial r}\right|_{r=b}=\frac{\sigma(\theta)}{\epsilon_{0}} \tag{36}
\end{equation*}
$$

where $\Phi^{I I}\left(\Phi^{I}\right)$ is the potential for $r>b(r<b)$. Then performing the derivatives of Eqs.(35) and (31) we obtain:

$$
\begin{equation*}
\sigma(\theta)=\epsilon_{0} V_{0}\left[\frac{2}{b-a}-\frac{3 a^{2} \cos \theta}{\left(b^{3}-a^{3}\right)}\right] \tag{37}
\end{equation*}
$$

