P571
October 3, 2013

## SOLUTION:

a) We need to express the coordinates of $\mathbf{r}^{\prime}$ in $S^{\prime}$ in terms of the coordinates of $\mathbf{r}$ in $S$. We see that the $z$ component of $\mathbf{r}$ is not affected by the change of system. Thus we need to concentrate on the components of $\mathbf{r}$ parallel to the plane perpendicular to $z=x_{3}$ as shown in the figure:


FIG. 1: Decomposition of the parralel component of $\mathbf{r}$ in $S$ and $S^{\prime}$.

We see that

$$
\begin{gather*}
x^{\prime 1} \cos \alpha=x^{1}  \tag{1}\\
x^{2}-x^{\prime 2}=x^{\prime 1} \sin \alpha \tag{2}
\end{gather*}
$$

Then, solving for $x^{11}$ in Eq.(1) we obtain:

$$
\begin{equation*}
x^{1}=\sec \alpha x^{1} \tag{3}
\end{equation*}
$$

and plugging Eq.(3) in Eq.(2) and solving for $x^{\prime 2}$ we obtain:

$$
\begin{equation*}
x^{\prime 2}=x^{2}-\tan \alpha x^{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime 3}=x^{3} \tag{5}
\end{equation*}
$$

b) We can obtain $M^{i}{ }_{j}=\frac{\partial x^{\prime} i}{\partial x^{j}}$ from Eqs. $(3,4,5)$ :

$$
M_{j}^{i}=\left(\begin{array}{ccc}
\sec \alpha & 0 & 0  \tag{6}\\
-\tan \alpha & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

c) The covariant basis in $S$ is given by:

$$
\begin{equation*}
\hat{\mathbf{e}}_{1}=(1,0,0) \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \hat{\mathbf{e}}_{2}=(0,1,0),  \tag{8}\\
& \hat{\mathbf{e}}_{3}=(0,0,1) . \tag{9}
\end{align*}
$$

d) The easiest way is to use the transformation rules:

$$
\begin{equation*}
\hat{\mathbf{e}}_{i}=\frac{\partial x^{\prime j}}{\partial x^{i}} \hat{\mathbf{e}}^{\prime}{ }_{j} \tag{10}
\end{equation*}
$$

We need to solve the system of equations given by:

$$
\begin{gather*}
\hat{\mathbf{e}}_{1}=\sec \alpha \hat{\mathbf{e}}^{\prime}{ }_{1}-\tan \alpha \hat{\mathbf{e}}_{2}{ }_{2},  \tag{11}\\
\hat{\mathbf{e}}_{2}=\hat{\mathbf{e}}^{\prime}{ }_{2}, \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{e}}_{3}=\hat{\mathbf{e}}^{\prime}{ }_{3} \tag{12}
\end{equation*}
$$

We obtain:

$$
\begin{gather*}
\hat{\mathbf{e}}_{1}^{\prime}=\cos \alpha \hat{\mathbf{e}}_{1}+\sin \alpha \hat{\mathbf{e}}_{2},  \tag{13}\\
\hat{\mathbf{e}}^{\prime}{ }_{2}=\hat{\mathbf{e}}_{2} \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{e}}^{\prime}{ }_{3}=\hat{\mathbf{e}}_{3} . \tag{15}
\end{equation*}
$$

e) We know that

$$
g_{i j}^{\prime}=\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j}=\left(\begin{array}{ccc}
1 & \sin \alpha & 0  \tag{16}\\
\sin \alpha & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

f) We know that

$$
\begin{equation*}
x_{i}^{\prime}=g_{i j}^{\prime} x^{\prime j} \tag{17}
\end{equation*}
$$

and in part (a) we obtained $x^{\prime j}$ in terms of $x^{i}$ then we obtain Then,

$$
\begin{gather*}
x_{1}^{\prime}=x^{1} \cos \alpha+x^{2} \sin \alpha,  \tag{18}\\
x_{2}^{\prime}=x^{2}, \tag{19}
\end{gather*}
$$

and

$$
\begin{equation*}
x_{3}^{\prime}=x^{3} . \tag{20}
\end{equation*}
$$

g) We know that in $S \mathbf{r}=\left(x^{1}, x^{2}, x^{3}\right)=(3,2,1)$ then from (a) we find that

$$
\begin{gather*}
x^{\prime 1}=3 \sqrt{2},  \tag{21}\\
x^{\prime 2}=-1 \tag{22}
\end{gather*}
$$

and

$$
\begin{equation*}
x^{\prime 3}=1 \tag{23}
\end{equation*}
$$

The relationship between $x^{i}$ and $x_{j}^{\prime}$ was obtained in (f) then using these results we obtain:

$$
\begin{gather*}
x_{1}^{\prime}=5 \frac{\sqrt{2}}{2}  \tag{24}\\
x_{2}^{\prime}=2 \tag{25}
\end{gather*}
$$

and

$$
\begin{equation*}
x_{3}^{\prime}=1 \tag{26}
\end{equation*}
$$

h) The results obtained in (g) allow to calculate

$$
\begin{equation*}
x_{i}^{\prime} x^{\prime i}=15-2+1=14 . \tag{27}
\end{equation*}
$$

In S we obtain

$$
\begin{equation*}
x_{i} x^{i}=9+4+1=14 \tag{28}
\end{equation*}
$$

As expected the results are equal in both systems,
i) The tensor $T^{\prime i j}{ }_{k l}$ has rank 4 because it has 4 indices. Since we are in three dimensions the tensor has $3^{4}=81$ components.
j) We need to use the transformation rules to go from $S^{\prime}$ to $S$ for each index then:

$$
\begin{equation*}
T_{o p}^{m n}=\frac{\partial x^{m}}{\partial x^{\prime i}} \frac{\partial x^{n}}{\partial x^{\prime j}} \frac{\partial x^{\prime k}}{\partial x^{o}} \frac{\partial x^{\prime l}}{\partial x^{p}} T_{k l}^{\prime i j} \tag{29}
\end{equation*}
$$

k) I know that

$$
\begin{equation*}
T_{21}^{\prime 12}=x^{\prime 1} x^{\prime 2} x_{2}^{\prime} x_{1}^{\prime}=3 \sqrt{2} \times(-1) \times 2 \times 5 \sqrt{2} / 2=-30 \tag{30}
\end{equation*}
$$

while

$$
\begin{equation*}
T^{12}{ }_{21}=x^{1} x^{2} x_{2} x_{1}=3 \times 2 \times 2 \times 3=36 \tag{31}
\end{equation*}
$$

Since they are the components of a tensor we do not expect the two to be equal.
l) We see that $T^{m n o p}$ is a tensor symmetric under the exchange of any pair of indices. This means that of its $3 \times 3 \times 3 \times 3=81$ components only 15 of them are independent. We see that the independent components can be counted in the following way:
i) Components with all the indices equal, i.e., iiii: 3
ii) Components with 3 equal indeces and one different, iiij: 6 independent ( 3 values for i and 2 values left for j ).
iii) Components with indices equal in pairs, iijj: 3 independent.
iv) Components with 2 equal indices and the other 2 different, iijk: 3 independent.
m) The tensor $T^{\prime i j}{ }_{i j}$ has rank 0 because all its indices are contracted, i.e., it is a scalar.
n) We know that

$$
\begin{equation*}
T^{\prime i j}{ }_{i j}=r^{i} r^{\prime j} r_{i}^{\prime} r_{j}^{\prime}=x^{\prime i} x_{i}^{\prime} x^{j j} x_{j}^{\prime}=14 \times 14=196 \tag{32}
\end{equation*}
$$

where I used the result of part (h) Eq.(27).
o) We know that

$$
\begin{equation*}
T^{i j}{ }_{i j}=r^{i} r^{j} r_{i} r_{j}=x^{i} x_{i} x^{j} x_{j}=14 \times 14=196 \tag{33}
\end{equation*}
$$

where I used the result of part (h) Eq.(28). we see that $T=T^{\prime}$ as it should be since the tensor is a scalar.

