Problem 1:

Part a)
In the figure

$$
\begin{equation*}
A^{\prime}=A \sin \gamma \tag{1}
\end{equation*}
$$

Using Pythagoras' theorem we obtain that

$$
\begin{equation*}
A^{\prime}=\left(A_{x}^{2}+A_{y}^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

and using Pythagoras again

$$
\begin{equation*}
A=\left(A^{\prime 2}+A_{z}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

Plugging Eq.(2) in Eq.(3) we obtain

$$
\begin{equation*}
A=\left(A_{x}^{2}+A_{y}^{2}+A_{z}^{2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

Part b)
The components of A can be written in terms of the direction cosines:

$$
\begin{align*}
& A_{x}=A \cos \alpha \tag{5}\\
& A_{y}=A \cos \beta \tag{6}\\
& A_{z}=A \cos \gamma \tag{7}
\end{align*}
$$

Replacing (5), (6), and (7) in (4):

$$
\begin{equation*}
A=\left[A^{2}\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)\right]^{1 / 2} \tag{8}
\end{equation*}
$$

Then, Eq.(8) is satisfied only if

$$
\begin{equation*}
\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)=1 \tag{9}
\end{equation*}
$$

