Problem 2-1.7.6:

Part a) Orient the system of coordinates so that the z-axis is parrallel to \mathbf{a}. Then $\mathbf{a}=(0,0, a)$ and $\mathbf{r}=(x, y, z)$ and

$$
\begin{gather*}
(\mathbf{r}-\mathbf{a}) \cdot \mathbf{a}=0 \\
(x, y, z-a) \cdot(0,0, a)=0 \\
z a=a^{2} \\
z=a \tag{1}
\end{gather*}
$$

Eq.(1) indicates that the vectors \mathbf{r} satisfying the constraint have the form $\mathbf{r}=(x, y, a)$ which means that the tip of \mathbf{r} is on the horizontal plane defined by $z=a$ as shown in Fig.1.

Part b) As in part (a) let's orient the system of coordinates so that the z-axis is parrallel to \mathbf{a}. Then $\mathbf{a}=(0,0, a)$ and $\mathbf{r}=(x, y, z)$ and

$$
\begin{gather*}
(\mathbf{r}-\mathbf{a}) \cdot \mathbf{r}=0 \tag{2}\\
(x, y, z-a) \cdot(x, y, z)=0 \\
x^{2}+y^{2}+(z-a) z=0 . \tag{3}
\end{gather*}
$$

Now let's add and substract $a^{2} / 4$ in Eq.(3) in order to complete the square. We obtain

$$
\begin{gather*}
x^{2}+y^{2}+z^{2}-z a+\frac{a^{2}}{4}-\frac{a^{2}}{4}=0, \\
x^{2}+y^{2}+\left(z-\frac{a}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2} . \tag{4}
\end{gather*}
$$

Eq.(4) indicates that (x, y, z), the coordinates of \mathbf{r} that satisfy Eq.(2), lie on a sphere of radius $\frac{a}{2}$ centered at the point $(0,0, a / 2)$ as shown in the figure.

