Problem 3-1.7.8:

We know that $\mathbf{r}=(2,1,3) \mathrm{km}, \mathbf{v}=(1,2,3) \mathrm{m} / \mathrm{s}$, and $\mathbf{x}_{0}=(1,1,1) \mathrm{km}$. The position of the rocket at time t is given by

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}_{0}+\mathbf{v} t=(1000+t, 1000+2 t, 1000+3 t) m \tag{1}
\end{equation*}
$$

The distance between the observer and the rocket is:

$$
\begin{gather*}
|\mathbf{r}-\mathbf{x}|=[(\mathbf{r}-\mathbf{x}) \cdot(\mathbf{r}-\mathbf{x})]^{1 / 2}= \\
=\left(10^{6}+4 \times 10^{6}-14000 t+14 t^{2}\right]^{1 / 2} . \tag{2}
\end{gather*}
$$

We can obtain the value of t for which Eq.(2) is a minimum by taking the derivative of Eq.(2) with respect to t and equating it to 0 . We find $t=500 \mathrm{~s}$ which replacing in Eq.(2) gives us a minimum distance equal to $\sqrt{1.5} \mathrm{~km}$.

