Homework \#10

Problem 5:

Since we have to calculate the potential produced by the charged ring in all space we know that the Green function is just given by

$$
\begin{equation*}
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{1}
\end{equation*}
$$

since we do not need the extra term needed to adjust the potential to zero on a surface at a finite distance from the origin. We also know that from Green's theorem, the potential is given by:

$$
\begin{equation*}
\Phi(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{V} \rho\left(\mathbf{r}^{\prime}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d V \tag{2}
\end{equation*}
$$

In this case

$$
\begin{equation*}
\rho(\mathbf{r})=\frac{q}{2 \pi a^{2}} \delta(r-a) \delta(\cos \theta) \tag{3}
\end{equation*}
$$

In order to perform the integral in Eq.(2) easily we will expand Eq.(1) in spherical harmonics. We saw in class that

$$
\begin{equation*}
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} \frac{Y_{l}^{m}(\theta, \phi) Y_{l}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right)}{(2 l+1)} \tag{4}
\end{equation*}
$$

Plugging (3) and (4) in (2) we obtain:

$$
\begin{gather*}
\Phi(\mathbf{r})=\frac{q 4 \pi}{4 \pi \epsilon_{0} 2 \pi a^{2}} \int_{0}^{\infty} r^{\prime 2} d r^{\prime} \int_{-1}^{1} d \cos \left(\theta^{\prime}\right) \int_{0}^{2 \pi} d \phi^{\prime} \delta\left(r^{\prime}-a\right) \delta\left(\cos \theta^{\prime}\right) \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} \frac{Y_{l}^{m}(\theta, \phi) Y_{l}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right)}{(2 l+1)}= \\
=\frac{q}{2 \pi \epsilon_{0}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{Y_{l}^{m}(\theta, \phi)}{(2 l+1)} \frac{r_{<}^{l}}{r_{>}^{l+1}} \int_{0}^{2 \pi} d \phi^{\prime} Y_{l}^{m *}\left(\pi / 2, \phi^{\prime}\right) \tag{5}
\end{gather*}
$$

but

$$
\begin{equation*}
\int_{0}^{2 \pi} d \phi^{\prime} Y_{l}^{m *}\left(\pi / 2, \phi^{\prime}\right)=2 \pi \sqrt{\frac{2 l+1}{4 \pi}} P_{l}(0) \delta_{m, 0} \tag{6}
\end{equation*}
$$

Then, replacing (6) in (5) we obtain:

$$
\begin{equation*}
\Phi(\mathbf{r})=\frac{q}{\epsilon_{0}} \sum_{l=0}^{\infty} \frac{Y_{l}^{0}(\theta, \phi)}{(2 l+1)} \frac{r_{<}^{l}}{r_{>}^{l+1}} \sqrt{\frac{2 l+1}{4 \pi}} P_{l}(0) \tag{7}
\end{equation*}
$$

Using (15.96) we obtain:

$$
\begin{equation*}
\Phi(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0}} \sum_{j=0}^{\infty} \frac{(-1)^{j}(2 j)!}{2^{2 j}(j!)^{2}} \frac{r_{<}^{2 j}}{r_{>}^{2 j+1}} P_{2 j}(\cos (\theta)) \tag{8}
\end{equation*}
$$

where $r_{<}\left(r_{>}\right)$is the smaller (larger) between r and a.

