Homework #10

Problem 5:

Since we have to calculate the potential produced by the charged ring in all space we know that the Green function
is just given by

1

r—r'|’

G(r,v') = (1)

since we do not need the extra term needed to adjust the potential to zero on a surface at a finite distance from the
origin. We also know that from Green’s theorem, the potential is given by:

b(r) = 47:60 /Vp(r')G(r, r')dv. (2)
In this case
p(r) = 2:a26(r —a)d(cosh). (3)

In order to perform the integral in Eq.(2) easily we will expand Eq.(1) in spherical harmonics. We saw in class that
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Plugging (3) and (4) in (2) we obtain:
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Then, replacing (6) in (5) we obtain:
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Using (15.96) we obtain:
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where 7« (rs) is the smaller (larger) between r and a.



