## Homework \#10

## Problem 6:

In class we found that the Green function for a volume inside a sphere of radius $R$ is given by

$$
\begin{equation*}
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}-\frac{R}{r^{\prime}\left|\mathbf{r}-\frac{R^{2} \hat{\hat{n}}}{r^{\prime}}\right|} \tag{1}
\end{equation*}
$$

The expansion for the first term in terms of spherical harmonics has been presented in the previous problem and it is given by:

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} \frac{Y_{l}^{m}(\theta, \phi) Y_{l}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right)}{(2 l+1)} \tag{2}
\end{equation*}
$$

The expansion of the second term has a similar form but we know that $r<R^{2} / r^{\prime}$ because $r<R$ always, and $r^{\prime}<R$ always which means that $R / r^{\prime}>1$ and thus $R^{2} / r^{\prime}>R$. Then

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\frac{R^{2} \hat{\mathbf{n}}}{r^{\prime}}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r^{l} r^{\prime l+1}}{\left(R^{2}\right)^{l+1}} \frac{Y_{l}^{m}(\theta, \phi) Y_{l}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right)}{(2 l+1)} \tag{3}
\end{equation*}
$$

Replacing (2) and (3) in (1) we obtain:

$$
\begin{equation*}
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{(2 l+1)}\left[\frac{r_{<}^{l}}{r_{>}^{l+1}}-\frac{r^{l} r^{\prime l}}{R^{2 l+1}}\right] Y_{l}^{m}(\theta, \phi) Y_{l}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{4}
\end{equation*}
$$

where $r_{<}\left(r_{>}\right)$is the smaller (larger) between $r$ and $r^{\prime}$.

