Problem 1-15.4.10:

We need to calculate

$$
\begin{equation*}
\sin \theta \frac{d P_{n}(\cos \theta)}{d(\cos \theta)} \tag{1}
\end{equation*}
$$

Doing the change of variables $x=\cos \theta$ we see that Eq.(1) becomes:

$$
\begin{equation*}
\left(1-x^{2}\right)^{1 / 2} \frac{d P_{n}(x)}{d x} \tag{2}
\end{equation*}
$$

Then, plugging $m=1$ in Eq.(15.79) in the book, we obtain that

$$
\begin{equation*}
P_{n}^{1}(x)=-\left(1-x^{2}\right)^{1 / 2} \frac{d P_{n}(x)}{d x} \tag{3}
\end{equation*}
$$

Combining (3) and (2) we obtain

$$
\begin{equation*}
\left(1-x^{2}\right)^{1 / 2} \frac{d P_{n}(x)}{d x}=-P_{n}^{1}(x) \tag{4}
\end{equation*}
$$

and changing back to the original variables (4) becomes:

$$
\begin{equation*}
\sin \theta \frac{d P_{n}(\cos \theta)}{d(\cos \theta)}=-P_{n}^{1}(\cos \theta) \tag{5}
\end{equation*}
$$

