Problem 3-15.5.2:

From the definition of $Y_{l}^{m}(\theta, \phi)$ we know that

$$
\begin{equation*}
Y_{l}^{m}(0, \phi)=\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(1) e^{i m \phi} . \tag{1}
\end{equation*}
$$

Since

$$
\begin{equation*}
P_{l}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{m / 2} \frac{d^{m} P_{n}(x)}{d x^{m}} \tag{2}
\end{equation*}
$$

we see that if $m \neq 0$ and $x=1$, Eq.(2) vanishes since in that case $\left(1-x^{2}\right)^{m / 2}=0$ and for $m=0$ we know that $P_{l}(1)=1$ for all l. Then

$$
\begin{equation*}
P_{l}^{m}(1)=(-1)^{m} \delta_{m 0} \tag{3}
\end{equation*}
$$

Replacing (3) in (1) we obtain

$$
\begin{equation*}
Y_{l}^{m}(0, \phi)=(-1)^{m} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} \delta_{m 0} e^{i m \phi}=\sqrt{\frac{2 l+1}{4 \pi}} \delta_{m 0} \tag{4}
\end{equation*}
$$

