Homework \#11

Problem 4:

i) Green Function approach:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions that was obtained in class:

$$
\begin{equation*}
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}-\frac{a}{r^{\prime}\left|\mathbf{r}-\frac{a^{2} \hat{\mathbf{n}}}{r^{\prime}}\right|} \tag{1}
\end{equation*}
$$

The next step is to perform its expansion in terms of spherical harmonics using the expression obtained in class:

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} \frac{Y_{l}^{m}(\theta, \phi) Y_{l}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right)}{(2 l+1)} \tag{2}
\end{equation*}
$$

where $r_{<}\left(r_{>}\right)$is the smaller (larger) of r^{\prime} and r. The expansion of the second term has a similar form but we know that in this problem, in which the volume considered is the volume outside the sphere of radius $a, r>a^{2} / r^{\prime}$ because $r>a$ always, and $r^{\prime}>a$ always which means that $a / r^{\prime}<1$ and thus $a^{2} / r^{\prime}<a$. Then

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\frac{a^{2} \hat{\mathbf{n}}}{r^{\prime}}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{\left(a^{2} / r^{\prime}\right)^{l}}{(r)^{l+1}} \frac{Y_{l}^{m}(\theta, \phi) Y_{l}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right)}{(2 l+1)}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{a^{2 l}}{r^{\prime l}(r)^{l+1}} \frac{Y_{l}^{m}(\theta, \phi) Y_{l}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right)}{(2 l+1)} \tag{3}
\end{equation*}
$$

Replacing (2) and (3) in (1) we obtain:

$$
\begin{equation*}
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{(2 l+1)}\left[\frac{r_{<}^{l}}{r_{>}^{l+1}}-\frac{a^{2 l}}{\left(r r^{\prime}\right)^{l+1}}\right] Y_{l}^{m}(\theta, \phi) Y_{l}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{4}
\end{equation*}
$$

where $r_{<}\left(r_{>}\right)$is the smaller (larger) between r and r^{\prime}.
In the problem we are considering the density of charge is zero thus, only the surface integral contributes to the potential outside the sphere which is given by

$$
\begin{equation*}
\Phi(\mathbf{r})=\frac{-1}{4 \pi} \oint_{S} \Phi_{s} \frac{\partial G}{\partial n^{\prime}} d S^{\prime} \tag{5}
\end{equation*}
$$

In this case $n^{\prime}=-r^{\prime}$ since we need to consider the normal that points outside the volume which is the exterior of the sphere of radius a. Also notice that r^{\prime} has to be on the surface, i.e., $r^{\prime}=a$ while r is outside the sphere, then $r^{\prime}<r$ which means that in Eq.(4) we have to use $r_{<}=r^{\prime}$ and $r_{>}=r$. Then we obtain

$$
\begin{equation*}
-\left.\frac{\partial G}{\partial r^{\prime}}\right|_{r^{\prime}=a}=-4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{(2 l+1)}\left[\frac{l a_{<}^{l-1}}{r^{l+1}}+(l+1) \frac{a^{2 l+1}}{a^{l+2} r^{l+1}}\right] Y_{l}^{m}(\theta, \phi) Y_{l}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right) . \tag{6}
\end{equation*}
$$

Plugging Eq.(6) in Eq.(5) we obtain:

$$
\begin{equation*}
\Phi(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{(2 l+1)} Y_{l}^{m}(\theta, \phi) a^{2}\left[\frac{l a_{<}^{l-1}}{r^{l+1}}+\frac{(l+1) a^{2 l+1}}{a^{l+2} r^{l+1}}\right] \int_{-1}^{1} d\left(\cos \theta^{\prime}\right) \Phi_{S} \int_{0}^{2 \pi} Y_{l}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{7}
\end{equation*}
$$

We see that

$$
\begin{equation*}
\int_{0}^{2 \pi} Y_{l}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right)=2 \pi \sqrt{\frac{2 l+1}{4 \pi}} P_{l}\left(\cos \theta^{\prime}\right) \delta_{m, 0} \tag{8}
\end{equation*}
$$

Inserting Eq.(8) in Eq.(7) we obtain:

$$
\begin{equation*}
\Phi(r, \theta)=\frac{1}{2} \sum_{l=0}^{\infty} P_{l}(\cos \theta)(2 l+1) \frac{a^{l+1}}{r^{l+1}}\left[-V_{0} \int_{-1}^{0} d\left(\cos \theta^{\prime}\right) P_{l}\left(\cos \theta^{\prime}\right)+V_{0} \int_{0}^{1} d\left(\cos \theta^{\prime}\right) P_{l}\left(\cos \theta^{\prime}\right)\right] \tag{9}
\end{equation*}
$$

Which using the symmetry properties of the Legendre polynomials becomes

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{j=0}^{\infty}(4 j+3) P_{2 j+1}(\cos \theta)\left(\frac{a}{r}\right)^{2 j+2} V_{0} \int_{0}^{1} d\left(\cos \theta^{\prime}\right) P_{2 j+1}\left(\cos \theta^{\prime}\right) \tag{10}
\end{equation*}
$$

Using 12.3.8: $\int_{0}^{1} P_{2 j+1}(x) d x=\frac{P_{2 j}(0)}{2 j+1}=\frac{(-1)^{j}(2 j-1)!!}{2 j+2!!}$,

$$
\begin{equation*}
\Phi(r, \theta)=V_{0} \sum_{j=0}^{\infty}(4 j+3) P_{2 j+1}(\cos \theta) \frac{(-1)^{j}(2 j-1)!!}{2 j+2!!}\left(\frac{a}{r}\right)^{2 j+2} \tag{11}
\end{equation*}
$$

ii) Separation of variables:

Notice that we only care about the region given by $r \geq a$, there are no free charges, the b.c. are given on a spherical surface, and the problem has azimuthal symmetry; then we propose a solution to Laplace's equation in spherical coordinates and independent of ϕ :

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{l=0}^{\infty} \frac{A_{l}}{r^{l+1}} P_{l}(\cos \theta) \tag{12}
\end{equation*}
$$

where we have used the fact that the potential vanishes as $r \rightarrow \infty$ and then we cannot have positive powers of r in the potential. In order to obtain the coefficients A_{l} we will use the boundary condition that $\Phi(r=a, \theta)=V_{S}$ with $V_{S}=V_{0}$ for $0 \leq \theta \leq \pi / 2$ and $V_{S}=-V_{0}$ for $\pi / 2<\theta \leq \pi$:

$$
\begin{equation*}
\Phi(r=a, \theta)=\sum_{l=0}^{\infty} \frac{A_{l}}{a^{l+1}} P_{l}(\cos \theta)=V_{S} \tag{13}
\end{equation*}
$$

Now we multiply both sides of Eq.(13) by $P_{n}(\cos \theta)$ and integrate over $\cos \theta$ ranging from -1 to 1 taking advantage of the orthogonality properties of the Legendre polynomials:

$$
\begin{equation*}
\sum_{l=0}^{\infty} \frac{A_{l}}{a^{l+1}} \int_{-1}^{1} d(\cos \theta) P_{l}(\cos \theta) P_{n}(\cos \theta)=V_{0}\left(-\int_{-1}^{0} d(\cos \theta) P_{n}(\cos \theta)+\int_{0}^{1} d(\cos \theta) P_{n}(\cos \theta)\right) \tag{14}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\int_{-1}^{1} d(\cos \theta) P_{l}(\cos \theta) P_{n}(\cos \theta)=\frac{2}{2 l+1} \delta_{l, n} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(-\int_{-1}^{0} d(\cos \theta) P_{n}(\cos \theta)+\int_{0}^{1} d(\cos \theta) P_{n}(\cos \theta)\right)=\left(\int_{0}^{1} d(-\cos \theta) P_{n}(\cos \theta)+\int_{0}^{1} d(\cos \theta) P_{n}(\cos \theta)\right) \tag{16}
\end{equation*}
$$

Eq.(16) vanishes if n is even while if it is odd, i.e., $n=2 j+1$, the integral equals $\left.2 \int_{0}^{1} d(\cos \theta) P_{2 j+1}(\cos \theta)\right)=$ $2 \frac{P_{2 j}(0)}{2 j+1}=2 \frac{(-1)^{j}(2 j-1)!!}{2 j+2!!}$ as discussed in part (i) of the problem, then

$$
\begin{equation*}
\frac{A_{n}}{a^{n+1}} \frac{2}{2 n+1}=0 \tag{17}
\end{equation*}
$$

for n even so that $A_{n}=0$ for n even and for odd $n=2 j+1$ we obtain

$$
\begin{equation*}
\frac{A_{2 j+1}}{a^{2 j+2}} \frac{2}{4 j+3}=V_{0} 2 \frac{(-1)^{j}(2 j-1)!!}{2 j+2!!} \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
A_{2 j+1}=V_{0} \frac{(-1)^{j}(2 j-1)!!}{2 j+2!!} a^{2 j+2}(4 j+3) . \tag{19}
\end{equation*}
$$

Plugging Eq.(19) into Eq.(12) we obtain

$$
\begin{equation*}
\Phi(r, \theta)=V_{0} \sum_{j=0}^{\infty}(4 j+3) P_{2 j+1}(\cos \theta) \frac{(-1)^{j}(2 j-1)!!}{2 j+2!!}\left(\frac{a}{r}\right)^{2 j+2} \tag{20}
\end{equation*}
$$

which, as expected, is the same result as Eq.(11).

