Problem 8:

a) We have to consider $f(x)=1$ for $|x|<1$ and 0 otherwise.

1) $f(x)$ cannot be expanded in terms of the sine FT because it is an even function and the sine expansion can only represent odd functions.
2) I should use the cosine FT.

$$
\begin{equation*}
f_{c}(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{1} \cos (k x) d x=\sqrt{\frac{2}{\pi}} \frac{\sin k}{k} \tag{1}
\end{equation*}
$$

b) Now consider $f(x)=1$ for $a<x<b$ with $a>0$ and $b>0$ and $f(x)=0$ otherwise.

1) I can expand $\mathrm{f}(\mathrm{x})$ in terms of the sine FT. I just have to assume that $\mathrm{f}(\mathrm{x})$ is odd, i.e., so that $f(x)=-1$ if $-b<x<-a$.
2) Now:

$$
\begin{equation*}
f_{s}(k)=\sqrt{\frac{2}{\pi}} \int_{a}^{b} \sin (k x) d x=\sqrt{\frac{2}{\pi}} \frac{(\cos k a-\cos k b)}{k} \tag{2}
\end{equation*}
$$

3) My sine FT is appropriated for $x \geq 0$.
4) As I mentioned in 1) I am assuming that $f(-x)=-1$ if $-b<-x<-a$.
5) Yes. I have to assume that $f(x)$ is even, i.e., that $f(-x)=1$ if $-b<-x<-a$.
6) In this case I should use the exponential form of the FT. By doing this the sine and cosine expansion add each other for $x>0$ but they cancel for $x<0$. The coefficients of the expansion are given by:

$$
\begin{equation*}
f(k)=\sqrt{\frac{1}{2 \pi}} \int_{a}^{b} e^{i k x} d x=\sqrt{\frac{1}{2 \pi}} \frac{\left(e^{i k b}-e^{i k a}\right)}{k} \tag{3}
\end{equation*}
$$

