Homework \#2

Problem 1:

a) From the figure we see that the coordinates of \mathbf{r} in S are given by:

$$
\begin{align*}
& x=r \cos \theta \tag{1}\\
& y=r \sin \theta \tag{2}
\end{align*}
$$

b) Let us find an expression for the axis \mathbf{e}_{i}^{\prime} in terms of the cartesian basis vectors \mathbf{e}_{j}. From the figure:

$$
\begin{gather*}
\mathbf{e}_{1}^{\prime}=\cos \gamma \mathbf{e}_{1}-\sin \gamma \mathbf{e}_{2} \tag{3}\\
\mathbf{e}_{2}^{\prime}=-\sin \beta \mathbf{e}_{1}+\cos \beta \mathbf{e}_{2} \tag{4}
\end{gather*}
$$

We see that

$$
\left(\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}\right)=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)\left(\begin{array}{cc}
\cos \gamma & -\sin \beta \tag{5}\\
-\sin \gamma & \cos \beta
\end{array}\right) .
$$

Here

$$
A=\left(\begin{array}{cc}
\cos \gamma & -\sin \beta \tag{6}\\
-\sin \gamma & \cos \beta
\end{array}\right)
$$

Then

$$
\begin{equation*}
\mathbf{e}_{i}^{\prime}=\mathbf{e}_{j} A^{j}{ }_{i}=A^{j}{ }_{i} \mathbf{e}_{j} \tag{7}
\end{equation*}
$$

c) From the figure we see that the covariant components are given by:

$$
\begin{gather*}
x_{1}^{\prime}=r \cos (\theta+\gamma)=r \cos \theta \cos \gamma-r \sin \theta \sin \gamma=x_{1} \cos \gamma-x_{2} \sin \gamma \tag{8}\\
x_{2}^{\prime}=r \cos (\pi / 2+\beta-\theta)=-r \sin (\beta-\theta)=-r \cos \theta \sin \beta+r \sin \theta \cos \beta=-x_{1} \sin \beta+x_{2} \cos \beta \tag{9}
\end{gather*}
$$

We see that x_{i}^{\prime} transforms like the axis, i.e.:

$$
\begin{equation*}
x_{i}^{\prime}=x_{j} A_{i}^{j}=A_{i}^{j} x_{j} \tag{10}
\end{equation*}
$$

d) From the figure we see that

$$
\begin{equation*}
\mathbf{x}^{\prime 1}+\mathbf{x}^{\prime 2}=\mathbf{r} \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
x_{1}=\left(\mathbf{x}^{\prime 1}+\mathbf{x}^{\prime 2}\right) \mathbf{e}_{1}=x^{\prime 1} \cos \gamma-x^{\prime 2} \sin \beta \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}=\left(\mathbf{x}^{\prime 1}+\mathbf{x}^{\prime 2}\right) \mathbf{e}_{2}=-x^{\prime 1} \sin \gamma+x^{\prime 2} \cos \beta \tag{13}
\end{equation*}
$$

The above can be expressed matricially as

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
\cos \gamma & -\sin \beta \tag{14}\\
-\sin \gamma & \cos \beta
\end{array}\right)\binom{x^{\prime 1}}{x^{\prime 2}}
$$

Then

$$
\begin{equation*}
x^{i}=A_{j}^{i} x^{j} \tag{15}
\end{equation*}
$$

where I used that $x_{i}=x^{i}$. Clearly to obtain the contravariant variable in terms of the cartesian ones I need to invert the relationship given in Eq. 15 and I get

$$
\begin{equation*}
x^{\prime i}=M^{i}{ }_{j} x^{j}, \tag{16}
\end{equation*}
$$

with

$$
M=\left(\begin{array}{cc}
\frac{\cos \beta}{\cos (\gamma+\beta)} & \frac{\sin \beta}{\cos (\gamma+\beta)} \tag{17}\\
\frac{\sin \gamma}{\cos (\gamma+\beta)} & \frac{\cos \gamma}{\cos (\gamma+\beta)}
\end{array}\right)
$$

Clearly

$$
\begin{equation*}
A^{i}{ }_{k} M^{k}{ }_{j}=\delta^{i}{ }_{j} . \tag{18}
\end{equation*}
$$

The contravariant components are obtained by writing explicitely Eq. 16 using Eq. 17:

$$
\begin{align*}
& x^{\prime 1}=x_{1} \frac{\cos \beta}{\cos (\gamma+\beta)}+x_{2} \frac{\sin \beta}{\cos (\gamma+\beta)} \tag{19}\\
& x^{\prime 2}=x_{1} \frac{\sin \gamma}{\cos (\gamma+\beta)}+x_{2} \frac{\cos \gamma}{\cos (\gamma+\beta)} \tag{20}
\end{align*}
$$

We see from Eq. 16 that x^{i} transforms contary to the axis, i.e.they are contravariant components.
e) From Eq. 15 we clearly see that

$$
\begin{equation*}
A^{i}{ }_{j}=\frac{\partial x^{i}}{\partial x^{\prime j}}, \tag{21}
\end{equation*}
$$

and from Eq. 16 we obtain that

$$
\begin{equation*}
M_{j}^{i}=\frac{\partial x^{i}}{\partial x^{j}} \tag{22}
\end{equation*}
$$

The expressions above can be explicitely verified by taking the corresponding derivatives of Eqs. 12 and Eq. 13 and comparing with Eq. 6 and by taking the corresponding derivatives of Eq. 19 and Eq. 20 and comparing with Eq. 17.
f) In class we wrote the elements of the matrix A in terms of the angle α formed by the axis $x^{\prime 1}$ and $x^{\prime} 2$. This means that in order to make comparisons we need to express β and γ in terms of α. Looking at the figure we notice that $\gamma=0$ and $\beta=\frac{3 \pi}{2}+\alpha$. Replacing these values for γ and β in Eq. 6 we obtain:

$$
A=\left(\begin{array}{cc}
\cos \gamma & -\sin \beta \tag{23}\\
-\sin \gamma & \cos \beta
\end{array}\right)=\left(\begin{array}{cc}
\cos (0) & -\sin \left(\frac{3 \pi}{2}+\alpha\right) \\
-\sin (0) & \cos \left(\frac{3 \pi}{2}+\alpha\right)
\end{array}\right)=\left(\begin{array}{cc}
1 & \cos \alpha \\
0 & \sin \alpha
\end{array}\right)
$$

which is in agreement with the matrix A obtained in class.

