## Problem 2:

Using the expressions provided in class we find

$$
\begin{align*}
\mathbf{a}_{1}^{\prime} & =\frac{4 \pi}{d} \frac{1}{2}(\hat{\mathbf{y}}+\hat{\mathbf{z}}-\hat{\mathbf{x}}),  \tag{1}\\
\mathbf{a}_{2}^{\prime} & =\frac{4 \pi}{d} \frac{1}{2}(\hat{\mathbf{z}}+\hat{\mathbf{x}}-\hat{\mathbf{y}})  \tag{2}\\
\mathbf{a}_{3}^{\prime} & =\frac{4 \pi}{d} \frac{1}{2}(-\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}}) \tag{3}
\end{align*}
$$

These three vectors expand a body centered cubic lattice. The side of the cubes in the reciprocal lattice have length $\frac{4 \pi}{d}$ where $d$ is the length of the cubes in the original fcc lattice.

