Problem 1: Consider the two-dimensional vector \mathbf{r} which has coordinates $\left(x_{1}, x_{2}\right)$ in a cartesian system S so that $\mathbf{r}=x^{i} \hat{e}_{i}$. Remember that in S $x_{i}=x^{i}$.
a) Find expressions for x^{i} in terms of r and θ, i.e., the magnitude of the vector and the angle that it makes with the x_{1}-axis.
b) Now consider an oblique system S^{\prime} with \hat{e}_{1}^{\prime} forming an angle γ with \hat{e}_{1} and \hat{e}_{2}^{\prime} forming an angle β with \hat{e}_{2}. Show that $\hat{e}_{j}^{\prime}=A^{j}{ }_{i} \hat{e}_{j}$ and provide the explicit form of the matrix $A^{j}{ }_{i}$ in terms of the angles β and γ.
c) Find the covariant components x_{i}^{\prime} of \mathbf{r} in S^{\prime} and show that they transform as $x_{i}^{\prime}=A^{j}{ }_{i} x_{j}$.
d) Find the contravariant components $x^{\prime i}$ of \mathbf{r} in S^{\prime} and show that they transform as $x^{\prime i}=M_{j}^{i} x^{j}$. Provide the explicit form for $M^{i}{ }_{j}$ and verify that $A^{i}{ }_{k} M^{k}{ }_{j}=\delta^{i}{ }_{j}$.
e) Show that $A^{i}{ }_{j}=\frac{\partial x^{i}}{\partial x^{\prime j}}$ and $M^{i}{ }_{j}=\frac{\partial x^{i}}{\partial x^{j}}$.
f) Find the values of β and γ for which S^{\prime} reduces to the oblique system used in class with \hat{e}_{1}^{\prime} parallel to \hat{e}_{1} and making an angle α with \hat{e}_{2}^{\prime}.

