Problem 1: Consider the two-dimensional vector **r** which has coordinates (x_1, x_2) in a cartesian system S so that $\mathbf{r} = x^i \hat{e}_i$. Remember that in S $x_i = x^i$.

a) Find expressions for x^i in terms of r and θ , i.e., the magnitude of the vector and the angle that it makes with the x_1 -axis.

b) Now consider an oblique system S' with \hat{e}'_1 forming an angle γ with \hat{e}_1 and \hat{e}'_2 forming an angle β with \hat{e}_2 . Show that $\hat{e}'_{i} = A^{j}{}_{i}\hat{e}_{j}$ and provide the explicit form of the matrix $A^{j}{}_{i}$ in terms of the angles β and γ .

c) Find the covariant components x'_i of **r** in S' and show that they transform as $x'_i = A^j{}_i x_j$. d) Find the contravariant components x'^i of **r** in S' and show that they transform as $x'^i = M^i{}_j x^j$. Provide the explicit form for $M^{i}{}_{j}$ and verify that $A^{i}{}_{k}M^{k}{}_{j} = \delta^{i}{}_{j}$.

e) Show that $A^i{}_j = \frac{\partial x^i}{\partial x'^j}$ and $M^i{}_j = \frac{\partial x'^i}{\partial x^j}$. f) Find the values of β and γ for which S' reduces to the oblique system used in class with \hat{e}'_1 parallel to \hat{e}_1 and making an angle α with \hat{e}'_2 .

