Homework \#2

Problem 5:

a) In the oblique coordinate system K^{\prime} defined in class the position vector \mathbf{r}^{\prime} can be written as

$$
\mathbf{r}^{\prime}=a \hat{\mathbf{e}}^{\prime}{ }_{1}+b \hat{\mathbf{e}}_{2}{ }_{2}
$$

Are a and b the covariant (perpendicular) or contravariant (parallel) components of \mathbf{r}^{\prime} ? Why? Give an explanation based on vectors' properties and another based on tensors' properties.
b)

Show that

$$
a=\frac{\left(\mathbf{r}^{\prime} \times \hat{\mathbf{e}}^{\prime}{ }_{2}\right) \cdot\left(\hat{\mathbf{e}}^{\prime}{ }_{1} \times \hat{\mathbf{e}}^{\prime}{ }_{2}\right)}{\left|\hat{\mathbf{e}}^{\prime}{ }_{1} \times \hat{\mathbf{e}}^{\prime}{ }_{2}\right|^{2}}
$$

and

$$
b=\frac{\left(\mathbf{r}^{\prime} \times \hat{\mathbf{e}}^{\prime}{ }_{1}\right) \cdot\left(\hat{\mathbf{e}}^{\prime}{ }_{2} \times \hat{\mathbf{e}}^{\prime}{ }_{1}\right)}{\left|\hat{\mathbf{e}}^{\prime}{ }_{2} \times \hat{\mathbf{e}}^{\prime}{ }_{1}\right|^{2}}
$$

