Homework \#2

Problem 5:

a) In the oblique coordinate system K^{\prime} defined in class the position vector \mathbf{r}^{\prime} can be written as

$$
\mathbf{r}^{\prime}=a \hat{\mathbf{e}}_{1}^{\prime}+b \hat{\mathbf{e}}_{2}{ }_{2}
$$

Are a and b the covariant (perpendicular) or contravariant (parallel) components of \mathbf{r}^{\prime} ? Why? Give an explanation based on vectors' properties and another based on tensors' properties.

It is clear that

$$
a=x^{\prime 1}
$$

and

$$
b=x^{\prime 2}
$$

i.e., the contravariant (parallel) components of \mathbf{r}^{\prime} in K^{\prime} because:
i) as vectors $\mathbf{r}^{\prime}=x^{\prime 1} \hat{\mathbf{e}}^{\prime}{ }_{1}+x^{\prime 2} \hat{\mathbf{e}}^{\prime}{ }_{2}$,
clearly seen in the figure with the components that was shown in class (see lectures) and
ii) because as a tensor

$$
\mathbf{r}^{\prime}=x^{\prime i} \hat{\mathbf{e}}_{i}
$$

since the base vectors are covariant the components of $r^{\prime i}$ have to be contravariant.
b)

Show that

$$
a=\frac{\left(\mathbf{r}^{\prime} \times \hat{\mathbf{e}}^{\prime}{ }_{2}\right) \cdot\left(\hat{\mathbf{e}}^{\prime}{ }_{1} \times \hat{\mathbf{e}}_{2}\right)}{\left|\hat{\mathbf{e}}_{1}^{\prime} \times \hat{\mathbf{e}}^{\prime}{ }_{2}\right|^{2}}
$$

and

$$
b=\frac{\left(\mathbf{r}^{\prime} \times \hat{\mathbf{e}}^{\prime}{ }_{1}\right) \cdot\left(\hat{\mathbf{e}}^{\prime}{ }_{2} \times \hat{\mathbf{e}}^{\prime}{ }_{1}\right)}{\left|\hat{\mathbf{e}}^{\prime}{ }_{2} \times \hat{\mathbf{e}}^{\prime}{ }_{1}\right|^{2}}
$$

In class (see lecture) we showed that

$$
x^{\prime 1}=x_{1}-x_{2} \operatorname{cotan} \alpha,
$$

and

$$
x^{\prime 2}=x_{2} \operatorname{cosec} \alpha
$$

Now let's look at the expression given for a. We see that

$$
\begin{equation*}
\mathbf{r}^{\prime} \times \hat{\mathbf{e}}_{2}^{\prime}=r \sin (\alpha-\theta)=r \sin \alpha \cos \theta-r \cos \alpha \sin \theta=x_{1} \sin \alpha-x_{2} \cos \alpha \tag{1}
\end{equation*}
$$

and it points out of the plane.

$$
\begin{equation*}
\hat{\mathbf{e}}_{1}^{\prime} \times \hat{\mathbf{e}}_{2}^{\prime}=\sin \alpha, \tag{2}
\end{equation*}
$$

and it points out of the plane, then replacing (1) and (2) in the expression for a we obtain:

$$
a=\frac{\left(x_{1} \sin \alpha-x_{2} \cos \alpha\right) \sin \alpha}{\sin ^{2} \alpha}=x_{1}-x_{2} \operatorname{cotan} \alpha=x^{\prime 1}
$$

Now let's look at the expression given for b. We see that

$$
\begin{equation*}
\mathbf{r}^{\prime} \times{\hat{\mathbf{e}^{\prime}}}_{1}=r \sin \theta=x_{2} \tag{3}
\end{equation*}
$$

and it points into the plane.

$$
\begin{equation*}
\hat{\mathbf{e}}_{2}^{\prime} \times \hat{\mathbf{e}}_{1}^{\prime}=\sin \alpha, \tag{4}
\end{equation*}
$$

and it points into the plane, then replacing (3) and (4) in the expression for b we obtain:

$$
b=\frac{x_{2} \sin \alpha}{\sin ^{2} \alpha}=x_{2} \operatorname{cosec} \alpha=x^{\prime 2}
$$

