Homework \#3

Problem 7:

Show that in the oblique coordinate system K^{\prime} defined in class the position vector \mathbf{r}^{\prime} can be written as

$$
\mathbf{r}^{\prime}=x_{1}^{\prime} \hat{\mathbf{e}}^{1}+x_{2}^{\prime} \hat{\mathbf{e}}^{2}=x_{i}^{\prime} \hat{\mathbf{e}}^{i}
$$

where x_{i}^{\prime} are the covariant (perpendicular) components of \mathbf{r}^{\prime} and $\hat{\mathbf{e}}^{i}$ are the contravariant basis vectors, i.e., the basis of the dual (or reciprocal) system of coordinates. Follow the steps below:
i) Find expressions for $\hat{\mathbf{e}}^{i}$ in terms of $\hat{\mathbf{e}}_{i}$, i.e., the versors of the orthogonal system K using that

$$
{\hat{\mathbf{e}^{\prime}}}^{i} \cdot \hat{\mathbf{e}}_{j}^{\prime}=\delta^{i}{ }_{j} .
$$

ii) Find the components of \mathbf{r} ' in the dual basis given by $\hat{\mathbf{e}}^{{ }^{i}}$ and show that they are identical to the perpendicular components x_{i}^{\prime} obtained in class.

