Homework \#3

Problem 7:

i) Let's find the contravariant basis vectors in K'. We know that the covariant basis vectors of K' are given by:

$$
\begin{equation*}
\hat{\mathbf{e}}_{1}^{\prime}=(1,0)=\hat{\mathbf{e}}_{1}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{e}}^{\prime}{ }_{2}=(\cos \alpha, \sin \alpha)=\cos \alpha \hat{\mathbf{e}}_{1}+\sin \alpha \hat{\mathbf{e}}_{2} \tag{2}
\end{equation*}
$$

Now let's find $\hat{\hat{\mathbf{e}}^{\prime}}{ }^{2}$ knowing that

$$
\begin{equation*}
{\hat{\mathbf{e}^{\prime}}}^{2} \cdot \hat{\mathbf{e}}_{1}^{\prime}=(a, b) \cdot(1,0)=a=0 \tag{3}
\end{equation*}
$$

We see that ${\hat{\mathbf{e}^{\prime}}}^{2}=(0, b)$ and we find b by requesting that

$$
\begin{equation*}
{\hat{\mathbf{e}^{\prime}}}^{2} \cdot \hat{\mathbf{e}}^{\prime}{ }_{2}=(0, b) \cdot(\cos \alpha, \sin \alpha)=b \sin \alpha=1 . \tag{4}
\end{equation*}
$$

Then, $b=\operatorname{cosec} \alpha$ and then

$$
\begin{equation*}
{\hat{\mathbf{e}^{\prime}}}^{2}=(0, \operatorname{cosec} \alpha) . \tag{5}
\end{equation*}
$$

Notice that ${\hat{\mathbf{e}^{\prime}}}^{2}$ is not normalized to 1 .

Now let's find $\hat{\mathbf{e}^{\prime}}{ }^{1}$ knowing that

$$
\begin{equation*}
{\hat{\mathbf{e}^{\prime}}}^{1} \cdot \hat{\mathbf{e}}_{1}{ }_{1}=(c, d) \cdot(1,0)=c=1 \tag{6}
\end{equation*}
$$

We see that $\hat{\mathbf{e}}^{1}=(1, d)$ and we find d by requesting that

$$
\begin{equation*}
{\hat{\mathbf{e}^{\prime}}}^{1} \cdot \hat{\mathbf{e}}_{2}^{\prime}=(1, d) \cdot(\cos \alpha, \sin \alpha)=(\cos \alpha+d \sin \alpha)=0 \tag{7}
\end{equation*}
$$

Then, $d=-\operatorname{cotan} \alpha$ and then

$$
\begin{equation*}
{\hat{\mathbf{e}^{\prime}}}^{1}=(1,-\operatorname{cotan} \alpha) . \tag{8}
\end{equation*}
$$

ii) Now we need to find the components of \mathbf{r}^{\prime} in the contravariant (or dual) basis. We know that

$$
\begin{equation*}
\mathbf{r}=x_{1} \hat{\mathbf{e}}_{1}+x_{2} \hat{\mathbf{e}}_{2}=s \hat{\mathbf{e}}^{1}+t \hat{\mathbf{e}}^{\prime^{2}} \tag{9}
\end{equation*}
$$

Replacing Eq. 5 and 8 in Eq. 9 I can compare components so that I find the values of s and t in terms of x_{1} and x_{2}. I obtain:

$$
\begin{equation*}
x_{1}=s, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}=-s \operatorname{cotan} \alpha+t \operatorname{cosec} \alpha \tag{11}
\end{equation*}
$$

Then, from 10 and 11 we find that

$$
\begin{equation*}
s=x_{1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
t=x_{1} \cos \alpha+x_{2} \sin \alpha \tag{13}
\end{equation*}
$$

Comparing with the expression that we got in class for x_{i}^{\prime} we see that $s=x_{1}^{\prime}$ and $t=x_{2}^{\prime}$ and thus

$$
\begin{equation*}
\mathbf{r}^{\prime}=x_{1}^{\prime} \hat{\mathbf{e}}^{1}+x_{2}^{\prime} \hat{\mathbf{e}}^{\prime^{\prime}} \tag{14}
\end{equation*}
$$

