Problem 1:

Using the oblique system of coordinates (x'^1, x'^2) discussed in class show that if Φ is an scalar function of the position vector \mathbf{r} which means that $\Phi(x'_1, x'_2) = \Phi(x'^1, x'^2) = \Phi(x_1, x_2)$, where (x'_1, x'_2) and (x'^1, x'^2) are the covariant and contravariant components of \mathbf{r} in the oblique system and (x_1, x_2) are the components of \mathbf{r} in a cartesian system: a) $B'_i = \frac{\partial \Phi}{\partial x'^i} = \partial'_i \Phi$ is a covariant vector. b) $B'^i = \frac{\partial \Phi}{\partial x'_i} = \partial'^i \Phi$ is a contravariant vector.