Problem 1:

Using the oblique system of coordinates $\left(x^{\prime 1}, x^{2}\right)$ discussed in class show that if Φ is an scalar function of the position vector \mathbf{r} which means that $\Phi\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\Phi\left(x^{\prime 1}, x^{\prime 2}\right)=\Phi\left(x_{1}, x_{2}\right)$, where $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(x^{\prime 1}, x^{\prime 2}\right)$ are the covariant and contravariant components of \mathbf{r} in the oblique system and $\left(x_{1}, x_{2}\right)$ are the components of \mathbf{r} in a cartesian system:
a) $B_{i}^{\prime}=\frac{\partial \Phi}{\partial x^{\prime 2}}=\partial_{i}^{\prime} \Phi$ is a covariant vector.
b) $B^{\prime i}=\frac{\partial \Phi}{\partial x_{i}^{\prime}}=\partial^{\prime i} \Phi$ is a contravariant vector.

