Problem 2-1.11.5:

In class we saw that

$$
\begin{equation*}
\delta(g(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|}, \tag{1}
\end{equation*}
$$

where x_{i} are the zeroes of $g(x)$. Then, in this case $g(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)$ which has zeroes at $x=x_{1}$ and $x=x_{2}$ and $g^{\prime}(x)=\left(x-x_{2}\right)+\left(x-x_{1}\right)$; then, $g^{\prime}\left(x_{1}\right)=x_{1}-x_{2}$ and $g^{\prime}\left(x_{2}\right)=x_{2}-x_{1}$; replacing in Eq.(1) we obtain:

$$
\begin{equation*}
\delta\left(\left(x-x_{1}\right)\left(x-x_{2}\right)\right)=\frac{\left(\delta\left(x-x_{1}\right)+\delta\left(x-x_{2}\right)\right)}{\left|x_{1}-x_{2}\right|} \tag{2}
\end{equation*}
$$

