Problem 4:

Consider the vectors $V^{i}=\left(V^{1}, V^{2}\right)$ and $W^{i}=\left(W^{1}, W^{2}\right)$ defined in the system S given by the orthogonal coordinates $\left(x^{1}, x^{2}\right)$. Consider the transformation to system S^{\prime} given by the oblique axis $\left(x^{\prime 1}, x^{\prime 2}\right)$. $x^{\prime 1}$ is parallel to x^{1} and $x^{\prime 2}$ makes an angle α with $x^{\prime 1}$. Thus, as in the example done in class, the transformation matrices are given by:

$$
U_{j}^{i}=\frac{\partial x^{\prime i}}{\partial x^{j}}=\left(\begin{array}{cc}
1 & -\operatorname{cotan} \alpha \tag{1}\\
0 & \frac{1}{\sin \alpha}
\end{array}\right)
$$

and

$$
\left(U^{-1}\right)_{j}^{i}=\frac{\partial x^{i}}{\partial x^{\prime j}}=\left(\begin{array}{cc}
1 & \cos \alpha \tag{2}\\
0 & \sin \alpha
\end{array}\right)
$$

a) Construct

$$
\begin{aligned}
& A^{i j}=V^{i} W^{j} \\
& A_{i j}=V_{i} W_{j} \\
& A^{i}{ }_{j}=V^{i} W_{j} \\
& A_{i}{ }^{j}=V_{i} W^{j}
\end{aligned}
$$

b) Find in $\mathrm{S}^{\prime} A^{\prime i j}, A^{\prime i}{ }_{j}, A_{i j}^{\prime}$, and $A_{i}^{\prime j}$.
c) We know that in $\mathrm{S}, A^{i j}=A^{i}{ }_{j}=A_{i j}=A_{i}{ }^{j}$ because the system is cartesian. Using the expression for the matrices U, U^{-1} and A calculate A^{\prime} by performing the similarity transformation $A^{\prime}=U A U^{-1}$.

Now compare the expression obtained with the expressions for A^{\prime} obtained in part b). Which one corresponds to the similarity transformation?
d) Based on the results obtained in c) write the similarity transformation using tensor notation.

