Problem 1-4.1.8:
$T_{i j k \ldots}$ is a tensor of rank n.

$$
\sum_{j} \frac{\partial T_{i j k \ldots}}{\partial x_{j}}=\partial^{j} T_{i j k \ldots}=C_{i \hat{j} k \ldots}
$$

where \hat{j} indicates that the index j is no longer there. Since the derivative is a tensor of rank 1 its direct product with T gives a tensor of rank $n+1$, the contraction of the index j reduces the rank of this tensor by 2 , i.e. $n+1-2=n-1$. Thus C is a tensor of rank $n-1$. Notice that since we are using cartesian coordinates we have not used covariant and contravariant placements for the indices.

