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Homework #9

Problem 3 - 15.3.1:

We need to express the potential of the given array of charges in terms of Legendre polynomials. If we chose the z
axis parallel to the direction in which the charges are alligned and we put the charge −2q at the origin we see that
the system has azimuthal symmetry. We see that, except over a spherical surface of radius a, i.e., where the charges
q are located, Laplace equation is satisfied. So we can divide the space in two regions: region I for r ≤ a and region
II for r ≥ a; we will propose solutions to the Laplace equation in both regions and we are going to find the values of
the coefficients using b.c. at r = 0, r = a and r = ∞. Thus we propose:

ΦI(r, θ) =

∞∑

l=0

Alr
lPl(cosθ) −

2q

4πǫ0r
, (1)

where we have used that the potential diverges at r = 0 due to the charge −2q at the origin. That should provide the
only term with negative powers of r so, using the principle of superposition we added the potential produced by −2q
at the origin. The rest of the coefficients in the expansion should contain only positive powers of r.

In region II, since the potential has to vanish at r → ∞, only negative powers of r will appear and we propose:

ΦII(r, θ) =

∞∑

l=0

Bl

rl+1
Pl(cosθ). (2)

The coefficients Al and Bl will be determined by the b.c. at r = a. Since we have two sets of constants we need
two b.c.’s which are the following:

a) The potential is continuous at r = a then

ΦI(r = a, θ) = ΦII(r = a, θ), (3)

Thus, multiplying both sides of (3) by Pm(cosθ) and integrating over cosθ in the interval [-1,1], we find relationships
between the coefficients Al and Bl. However, notice that the case l = 0 has to be considered separately due to the
extra term in (1). Thus from (3) we obtain the following relationships:

i) If l = 0:

A0 =
B0

a
+

q

2πǫ0a
. (4)

ii) If l 6= 0:

Al =
Bl

a2l+1
. (5)

The second condition at r = a is that there is a jump in the normal component of the electric field which is equal to
σ(θ)/ǫ0. Here σ is the surface density of charge which is due to the two charges q placed at (r, θ) = (a, 0) and (a, π).
We need to express σ as a function of θ remembering that the integral of the charge density over the total surface of
the sphere has to give us the total charge which is 2q. Following the steps we followed in class we see that

σ(θ) =
q

2πa2
[δ(cosθ − 1) + δ(cosθ + 1)]. (6)

Since the component of the electric field normal to the surface where the b.c.’s are imposed is En = Er, in terms of
the potential it becomes −∂Φ

∂r
and the condition is

∂ΦII

∂r
|r=a −

∂ΦI

∂r
|r=a = −

σ

ǫ0
. (7)

Then using (7) we obtain

∑

l

[−(l + 1)
Bl

al+2
Pl(cosθ) − lAla

l−1Pl(cosθ) −
q

2πǫ0a2
P0(cosθ)] = −

q

2πǫ0a2
[δ(cosθ − 1) + δ(cosθ + 1)]. (8)
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Now we multiply both sides by Pm(cosθ) and integrate on cosθ between -1 and 1. We obtain, using the orthogonality
properties of the Legendre polynomials,

−
2(m + 1)

2m + 1

Bm

am+2
−

2m

2m + 1
Amam−1 −

2q

2πǫ0a2
δm,0 = −

q

2πǫ0a2
(Pm(1) − Pm(−1)). (9)

We know that Pm(1) = 1 for all m and Pm(−1) = (−1)m. This means that (9) is 0 if m is odd and − q
πǫ0a2 if m is

even. Then if we replace in (9) Am with the expressions in terms of Bm that we found before ((4) and (5)) we obtain
that for m odd:

Bm = Am = 0. (10)

For m = 0

B0 = 0,

and

A0 =
q

2πǫ0a
. (11)

For m even and different from 0:

Bm =
qam

2πǫ0

and

Am =
q

2πǫ0am+1
. (12)

Putting back the values of the coeficients in (1) and (2) we obtain:

ΦI(r, θ) =
q

2πǫ0a

∞∑

j=0

r2j

a2j
P2j(cosθ) −

q

2πǫ0r
, (13)

and

ΦII(r, θ) =
q

2πǫ0r

∞∑

j=1

a2j

r2j
P2j(cosθ). (14)

Notice that (14) is the expression valid far away from the array of charges and represents the potential of a quadrupole
because the first term in the expansion goes like r−3.


