Problem 4-15.3.2:

We could solve this problem as we solved Problem 12.1.1 but with that technique we'd have to separate the space in 3 regions because now there is charge at $r=a$ and at $r=2 a$ and it will be very tedious to find the solution. However, in class we found that

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \theta) \tag{1}
\end{equation*}
$$

where $r_{>}\left(r_{<}\right)$indicates the larger (smaller) between r and r^{\prime} and θ is the angle between \mathbf{r} and \mathbf{r}^{\prime}..
Then, knowing that a charge q at \mathbf{r}^{\prime} produces a potential at \mathbf{r} given by $\frac{q}{4 \pi \epsilon_{0}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$ and using (1), for the array of charges given and for $r \geq 2 a$ we have:

$$
\begin{equation*}
\Phi(r, \theta)=\frac{q}{4 \pi \epsilon_{0}} \sum_{l=0}^{\infty}\left[-2 \frac{a^{l}}{r^{l+1}} P_{l}(\cos \theta)+2 \frac{(a)^{l}}{r^{l+1}} P_{l}(\cos (\pi-\theta))-\frac{(2 a)^{l}}{r^{l+1}} P_{l}(\cos (\pi-\theta))+\frac{(2 a)^{l}}{r^{l+1}} P_{l}(\cos \theta)\right] \tag{2}
\end{equation*}
$$

Notice that $\left.P_{l}(\cos (\pi-\theta))\right)=P_{l}(-\cos \theta)=(-1)^{l} P_{l}(\cos \theta)$ then (2) becomes:

$$
\begin{equation*}
\Phi(r, \theta)=\frac{q}{4 \pi \epsilon_{0}} \sum_{l=0}^{\infty}\left[-2 \frac{a^{l}}{r^{l+1}}+2(-1)^{l} \frac{(a)^{l}}{r^{l+1}}-(-1)^{l} \frac{(2 a)^{l}}{r^{l+1}}+\frac{(2 a)^{l}}{r^{l+1}}\right] P_{l}(\cos \theta) \tag{3}
\end{equation*}
$$

We see that the terms with l even vanish and if $l=1$ the coefficient is also 0 . Thus, the expression is given by a sum over odd values of l with $l=3$ being the first term:

$$
\begin{equation*}
\Phi(r, \theta)=\frac{q}{\pi \epsilon_{0}} \sum_{j=1}^{\infty} \frac{\left(2^{2 j}-1\right) a^{2 j+1}}{r^{2 j+2}} P_{2 j+1}(\cos \theta) \tag{4}
\end{equation*}
$$

Notice that (4) is the expression valid far away from the array of charges and represents the potential of an octupole because the first term in the expansion goes like r^{-4}.

