Homework \#9

Problem 5-15.2.3:

We want to expand the delta function in Legendre polynomials which is OK because they form a set of orthogonal functions in the interval $[-1,1]$. So we write:

$$
\begin{equation*}
\delta(x)=\sum_{l=0}^{\infty} A_{l} P_{l}(x) \tag{1}
\end{equation*}
$$

To find the coefficients A_{l} we use the orthogonality properties of the P_{l} 's. We multiply both sides of (1) by $P_{n}(x)$ and we integrate between -1 and 1 :

$$
\begin{equation*}
\int_{-1}^{1} \delta(x) P_{n}(x) d x=\sum_{l=0}^{\infty} A_{l} \int_{-1}^{1} P_{n}(x) P_{l}(x) d x \tag{2}
\end{equation*}
$$

which becomes

$$
\begin{equation*}
P_{n}(0)=A_{n} \frac{2}{2 n+1} \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
A_{n}=\frac{2 n+1}{2} P_{n}(0) . \tag{4}
\end{equation*}
$$

An expression for $P_{n}(0)$ is given in the Hint. We see that only terms with even n survive. Replacing in (1) we obtain:

$$
\begin{equation*}
\delta(x)=\sum_{j=0}^{\infty}\left(2 j+\frac{1}{2}\right) \frac{(-1)^{j}(2 j)!}{2^{2 j}(j!)^{2}} P_{2 j}(x) \tag{5}
\end{equation*}
$$

