Problem 6-15.2.12:

Let's assume that the ring has charge q then it constitute a density of charge σ at $r=a$ given by

$$
\begin{equation*}
\sigma(\theta)=\frac{q}{2 \pi a^{2}} \delta(\cos \theta) \tag{1}
\end{equation*}
$$

since $\int_{S} \sigma d S=q$. The problem has azimuthal symmetry and the Laplace equation is satisfied for $r<a$ and $r>a$. Thus we divide space in two regions proposing solutions of the Laplace equation in each of them and adjusting the coefficients using the b.c.'s at $r=0, r=a$ and $r \rightarrow \infty$. For $r<a$, we propose

$$
\begin{equation*}
\Phi^{I}(r, \theta)=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta) \tag{2}
\end{equation*}
$$

and for $r>a$ we propose:

$$
\begin{equation*}
\Phi^{I I}(r, \theta)=\sum_{l=0}^{\infty} \frac{B_{l}}{r^{l+1}} P_{l}(\cos \theta) \tag{3}
\end{equation*}
$$

At $r=a$ the potential is continuous so

$$
\begin{equation*}
\Phi^{I}(r=a)=\Phi^{I I}(r=a) \tag{4}
\end{equation*}
$$

and the jump in the normal component of the electric field is proportional to σ which gives the condition:

$$
\begin{equation*}
\left.\frac{\partial \Phi^{I I}}{\partial r}\right|_{r=a}-\left.\frac{\partial \Phi^{I}}{\partial r}\right|_{r=a}=-\frac{\sigma}{\epsilon_{0}} \tag{5}
\end{equation*}
$$

From (4) we obtain:

$$
\begin{equation*}
A_{l}=\frac{B_{l}}{a^{2 l+1}} \tag{6}
\end{equation*}
$$

Eq.(5) gives

$$
\begin{equation*}
\sum_{l}\left[-(l+1) \frac{B_{l}}{a^{l+2}} P_{l}(\cos \theta)-l A_{l} a^{l-1} P_{l}(\cos \theta)\right]=-\frac{q}{2 \pi \epsilon_{0} a^{2}} \delta(\cos \theta) \tag{7}
\end{equation*}
$$

Using orthogonality of the P_{l} 's and plugging (6) in (7) we obtain:

$$
\begin{equation*}
B_{l}=\frac{q}{4 \pi \epsilon_{0}} a^{l} P_{l}(0) \tag{8}
\end{equation*}
$$

Using (12.34) in the book and (6) we find that $A_{l}=B_{l}=0$ if l is odd and

$$
\begin{equation*}
A_{2 n}=\frac{B_{2 n}}{a^{4 n+1}}=\frac{q}{4 \pi \epsilon_{0} a^{2 n+1}} \frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}} \tag{9}
\end{equation*}
$$

Replacing (9) in (2) and (3) we obtain:

$$
\begin{equation*}
\Phi^{I}(r, \theta)=\frac{q}{4 \pi \epsilon_{0}} \sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{2^{2 n} a^{2 n+1}(n!)^{2}} r^{2 n} P_{2 n}(\cos \theta) \tag{10}
\end{equation*}
$$

which is the result requested by the problem (the potential for $r<a$) and

$$
\begin{equation*}
\Phi^{I I}(r, \theta)=\frac{q}{4 \pi \epsilon_{0}} \sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{2^{2 n} r^{2 n+1}(n!)^{2}} a^{2 n} P_{2 n}(\cos \theta) \tag{11}
\end{equation*}
$$

(10) and (11) can be compactified in the expression:

$$
\begin{equation*}
\Phi(r, \theta)=\frac{q}{4 \pi \epsilon_{0}} \sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}} \frac{r_{<}^{2 n}}{r_{>}^{2 n+1}} P_{2 n}(\cos \theta) \tag{12}
\end{equation*}
$$

