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SOLUTION:

Problem 1:

a)

Ak = ǫkji
mjxi

(xsxs)3/2
. (1)

b) As we see from the RHS of Eq.(1) the only free index,k, is covariant. Thus, we have obtained the covariant
components of A.

c) Now we need to consider how A transforms from a system S to a system S’. It is a tensor if the transformation
has none or an even number of (det M) factors, where M is the transformation matrix and it is a pseudotensor when
the number of (det M) factors is odd. From Eq.(1) we see that there will be two (det M) factors. One coming from
the transformation of the pseudotensor mj and the other coming from the transformation of the Levi-Civita tensor.
Thus, A is a tensor.

d)

(∇× A)i = ǫijk∂jǫktu
mtxu

(xsxs)3/2
. (2)

e) Now we need to consider how ∇×A transforms from a system S to a system S’. It is a tensor if the transformation
has none or an even number of (det M) factors, where M is the transformation matrix and it is a pseudotensor when
the number of (det M) factors is odd. From Eq.(2) we see that there will be three (det M) factors. One coming from
the transformation of the pseudotensor mj and the other two coming from the transformation of the two Levi-Civita
tensors. Thus, ∇× A is a pseudotensor.

f)

(∇× A)i = ǫijk∂jǫktu
mtxu

(xsxs)3/2
=

ǫijkǫktumt∂j
xu

(xsxs)3/2
= T i, (3)

where we have used that mj is a constant and the notation (∇ × A)i = T i. Using that ǫijkǫktu = ǫijkǫtuk =
δi

tδ
j
u − δi

uδj
t,

T i = (δi
tδ

j
u − δi

uδj
t)m

t∂j
xu

(xsxs)3/2
= (δi

tδ
j
u − δi

uδj
t)m

t(
∂jx

u

x3
−

3

2
xu ∂j(xsx

s)

x5
=



(δi
tδ

j
u − δi

uδj
t)m

t(
δj

u

x3
−

3

2
xu (∂jxsx

s + xs∂jx
s)

x5
=

(δi
tδ

j
u − δi

uδj
t)m

t(
δj

u

x3
−

3

2
xu (∂jgrsx

rxs + xsδj
s)

x5
=

(δi
tδ

j
u − δi

uδj
t)m

t(
δj

u

x3
−

3

2
xu (δj

rxr + xsδj
s)

x5
=

(δi
tδ

j
u − δi

uδj
t)m

t(
δj

u

x3
−

3

2
xu (xj + xj)

x5
=

(δi
tδ

j
u − δi

uδj
t)m

t(
δj

u

x3
−

3xuxj

x5
=

mi

x3
δj

uδj
u
−

3mixjxj

x5
− mj δi

j

x3
+

3mjxixj

x5
=

3
mi

x3
−

3mi

x3
−

mi

x3
+

3mjxixj

x5
=

−
mi

x3
+

3nimjnj

x3
=

3nimjnj − mi

x3
. (4)

We see that Eq.(4) can be written as

3n(n.m) − m

x3
. (5)

Problem 2:

a) The rank of ǫαβγρ∂βFγρ is 1 because there is only one free (non-contracted) index.

b) For α = 0 there are 6 values of ǫ0βγρ that are non-zero: ǫ0123 = ǫ0312 = ǫ0231 = 1 and ǫ0213 = ǫ0321 = ǫ0132 = −1,
then the equation becomes:

ǫ0123∂1F23 + ǫ0312∂3F12 + ǫ0231∂2F31 + ǫ0213∂2F13 + ǫ0321∂3F21 + ǫ0132∂1F32, (5)

replacing the values of the Levi-Civita tensor components and the elements of Fαρ by its values in terms of the field
components we obtain:

∂1(−Bx) + ∂3(−Bz) + ∂2(−By) − ∂2By − ∂3Bz − ∂1Bx = −2∇.B = 0. (6)

c) Let’s write the Lorentz transformation by components:

x′0 = γ(x0 − β1x
1 − β2x

2 − β3x
3), (7)

x′i = xi +
(γ − 1)

β2
(β1x

1 + β2x
2 + β3x

3)βi − γβix0, (8)



for i = 1, 2, and 3. If v = c(2/3, 0, 1/3) then ~β = (2

3
, 0, 1

3
) with β2 = 5/9 and γ = 3/2. Then the transformation takes

the form:

x′0 =
3

2
x0

− x1
−

1

2
x3, (9)

x′1 = −x0 +
7

5
x1 +

1

5
x3, (10)

x′2 = x2 (11)

x′3 = −
1

2
x0 +

1

5
x1 +

11

10
x3, (12)

Then,

Mµ
ν =

∂x′µ

∂xν
=









3

2
−1 0 − 1

2

−1 7

5
0 1

5

0 0 1 0
− 1

2

1

5
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, (13)

d) We know that

F ′01 = M0
µM1

νFµν = M0
µM1

νgµαgνβFαβ . (14)

Since only F03 and F30 are non-zero Eq.(14) only has two terms:

F ′01 = M0
0M

1
3g

00g33F03 + M0
3M

1
0g

33g00F30 =

−
3

2

1

5
E + (−

1

2
)(−1)E =

E

5
. (15)

e) Notice that B′

y = F ′

13, then

F ′

13 = g1µg3νF ′µν = g11g33F
′13 = F ′13 = M1

αM3
βFαβ = M1

αM3
βgατgβρFτρ. (16)

Since only the (03) and (30) components of Fτρ are non-zero we obtain:

F ′

13 = M1
0M

3
3g

00g33F03 + M1
3M

3
0g

33g00F30 =

−
1

5
(−

1

2
)(−E) + (−1)(−1)(

11

10
)E = E. (17)

Problem 3:

a) There is azimuthal symmetry so we propose:

ΦI(r, θ) =

∞
∑

l=0

Alr
lPl(cos θ), (18)



for 0 ≤ r ≤ a because since r = 0 is in the region we cannot have negative powers of r. For r ≥ a we propose

ΦII(r, θ) =

∞
∑

l=0

Bl

rl+1
Pl(cos θ), (19)

since positive powers of r would diverge when r → ∞ and thus, they cannot appear in the potential.
Now we use the b.c. to find Al and Bl. We know that at r = a, Φ(a, θ) = V0 sin2 θ. Let us write the surface potential

in terms of Legendre polynomials. Notice that the potential is an even function of cos θ since sin2 θ = 1−cos2 θ. Then
we only have to consider polynomials with even l. We know that P0(cos θ) = 1 and P2(cos θ) = 1

2
(3 cos2 θ− 1). Thus,

it is clear that the potential will be a linear combination of these two polynomials. We find that

sin2 θ =
2

3
(P0(cos θ) − P2(cos θ)). (20)

Then at r = a we find that

ΦII(a, θ) =

∞
∑

l=0

Bl

al+1
Pl(cos θ) =

2

3
V0(P0(cos θ) − P2(cos θ)). (21)

Due to the orthogonality of the Legendre polynomials we know that the coefficients of each polynomial have to be
the same on both sides of Eq.(21). Then we find that

Bl = 0, (22)

for all values of l different from 0 and 2 and

B0 =
2

3
V0a, (23)

and

B2 = −
2

3
V0a

3. (24)

Since the potential is continuous at r = a we find that Al = 0 for all l different from 0 and 2 and:

A0 =
2

3
V0, (25)

and

A2 = −
2

3

V0

a2
. (26)

Then

ΦI(r, θ) =
2

3
V0 −

2

3

V0r
2

a2
P2(cos θ), (27)

and

ΦII(r, θ) =
2V0a

3r
−

2

3

V0a
3

r3
P2(cos θ). (28)

b)
i) The addition of a grounded shell of radius b > a does not affect the potential for r ≤ a which remains the same,

and for r ≥ b the potential vanishes since the potential is 0 at r = b. Then we need to find the potential for a ≤ r ≤ b
which will be given by:

ΦII(r, θ) =

∞
∑

l=0

(Alr
l +

Bl

rl+1
)Pl(cos θ). (29)



Since at r = b the potential vanishes we find that

Al = −
Bl

b2l+1
. (30)

Using Eq.(30) and the boundary condition at r = a we find that

∞
∑

l=0

[
Bl

al+1
−

Bl

b2l+1
al]Pl(cos θ) =

2

3
V0(P0(cos θ) − P2(cos θ)). (31)

Comparing the coefficients of the Legendre polynomials we see that Al = Bl = 0 for all l different from 0 and 2 and

B0 =
2

3

abV0

(b − a)
, (32)

A0 = −
2

3

aV0

(b − a)
, (33)

B2 = −
2

3

a3b5V0

(b5 − a5)
, (34)

and

A2 =
2

3

a3V0

(b5 − a5)
. (34)

Then we find that

ΦII(r, θ) =
2

3

aV0

(b − a)
(
b

r
− 1) −

2

3

a3V0

(b5 − a5)
(
b5

r3
− r2)P2(cos θ). (35)

ii) As said above, the potential inside the sphere of radius a has not changed because the potential on its surface
remained the same.

iii) The result of part (b) becomes the same as the result of part (a) when b → ∞.


