Problem 1:

a) We have to solve Laplace’s equation because the region is free of charge.

b) The equation is

\[
\frac{\partial^2 \Phi(x, y)}{\partial x^2} + \frac{\partial^2 \Phi(x, y)}{\partial y^2} = 0.
\]

(1)

c) A general solution will have the form:

\[
\Phi(x, y) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi y}{b} \sinh \frac{n\pi x}{b},
\]

(2)

It satisfies Eq.(1) and the b.c.’s for \(\Phi = 0 \). The coefficient \(A_n \) is determined from the b.c. at \(x = a \):

\[
V \sin \frac{\pi y}{b} = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi y}{b} \sinh \frac{n\pi a}{b},
\]

(3)

from orthogonality of the sines we see that \(A_n = 0 \) for all \(n \neq 1 \) and

\[
A_1 = \frac{V}{\sinh \frac{\pi a}{b}}.
\]

(4)
Then,

\[
\Phi(x, y) = \frac{V}{\sinh \frac{\pi a}{b}} \sin \frac{\pi y}{b} \sinh \frac{\pi x}{b}.
\] (5)

d) At the center of the region

\[
\Phi\left(\frac{a}{2}, \frac{b}{2}\right) = \frac{V}{\sinh \frac{\pi a}{2b}} \sinh \frac{\pi a}{2b}.
\] (6)

Problem 2:

a) We need to solve Laplace’s equation in two different regions defined by the charged spherical surface. We cannot work in a single region because there is charge at \(r = a \) and Laplace’s equation is not valid there.

b) I expect to obtain the solution in terms of powers of \(r \) and Legendre polynomials because the boundary conditions are defined on a sphere and there is azimuthal symmetry.

c) In region I \((r \leq a)\) I propose:

\[
\Phi^I(r, \theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos \theta),
\] (6)

we set to zero the coefficient of negative powers of \(r \) since the potential cannot diverge at \(r = 0 \). In region II \((r \geq a)\) I propose:

\[
\Phi^{II}(r, \theta) = \sum_{l=0}^{\infty} B_l r^{l+1} P_l(\cos \theta),
\] (7)

where the coefficients of positive powers of \(r \) have been set to zero because the potential has to vanish as \(r \to \infty \).

d) In order to determine the two sets of undetermined coefficients \(A_l \) and \(B_l \) I need two boundary conditions. We know that at \(r = a \) the potential has to be continuous then:

\[
\Phi^I|_{r=a} = \Phi^{II}|_{r=a}.
\] (8)
We also know that the normal component of the electric field across a charged surface has a jump equal to \(\sigma/\varepsilon_0 \) where \(\sigma \) is the surface density of charge. In this case the normal to the surface is the radial component, then \(E_n = E_r = -\frac{\partial \Phi}{\partial r} \)
and the second boundary condition becomes:

\[
\frac{\partial \Phi_{II}}{\partial r} |_{r=a} - \frac{\partial \Phi_{I}}{\partial r} |_{r=a} = -\frac{\sigma_0 \cos \theta}{\varepsilon_0}.
\]

(9)

d) From Eq.(8) we find that

\[
A_l = \frac{B_l}{a^{2l+1}}.
\]

(10)

And from Eq.(9) we obtain:

\[
\sum_{l=0}^{\infty} [-(l+1)\frac{B_l}{a^{l+2}} - lA_l a^{l-1}] P_l(\cos \theta) = -\frac{\sigma_0 \cos \theta}{\varepsilon_0}.
\]

(11)

Notice that \(\cos \theta = P_1(\cos \theta) \). Thus multiplying both sides of Eq.(11) by \(P_m(\cos \theta) \) and integrating over \(\cos \theta \) in the interval \([-1,1]\) we obtain:

\[
-(m+1)\frac{B_m}{a^{m+2}} - mA_m a^{m-1} = -\frac{\sigma_0 \delta_{m,1}}{\varepsilon_0}.
\]

(12)

Replacing Eq.(10) in Eq.(12) we get:

\[
(2m+1)\frac{B_m}{a^{m+2}} = \frac{\sigma_0 \delta_{m,1}}{\varepsilon_0}.
\]

(13)

Then, if \(m \neq 1 \), \(A_m = B_m = 0 \). If \(m = 1 \)

\[
B_1 = \frac{\sigma_0 a^3}{3\varepsilon_0},
\]

(14)

and

\[
A_1 = \frac{\sigma_0}{3\varepsilon_0}.
\]

(15)

Replacing in Eq.(6) and (7) we obtain:

\[
\Phi_I(r, \theta) = \frac{\sigma_0}{3\varepsilon_0} r \cos \theta,
\]

(16)

and

\[
\Phi_{II}(r, \theta) = \frac{\sigma_0 a^3}{3\varepsilon_0 r^2} \cos \theta.
\]

(17)
Problem 3:

a) We can expand $f(x)$ in terms of Legendre polynomials because they form a set of orthogonal functions in the interval $[-1,1]$ in which $f(x)$ is defined.

![Graph showing the function $f(x)$ with key points at -1, a, and 1.]

A formal expression for the expansion is given by

$$f(x) = \sum_{l=0}^{\infty} a_l P_l(x). \quad (18)$$

b) Using orthogonality of the Legendre polynomials we find that

$$a_l = (2l + 1) \int_a^1 P_l(x) dx. \quad (19)$$

To find the first 3 coefficients we need to set $l = 0, 1, \text{ and } 2$ and perform the integral. We obtain:

$$a_0 = (1 - a), \quad (20)$$

$$a_1 = \frac{3}{2}(1 - a^2), \quad (21)$$

$$a_2 = \frac{5a}{2}(1 - a^2). \quad (22)$$
c) Using the hint we can easily solve the integral in Eq.(19) and we obtain:

\[a_l = (2l + 1) \int_a^1 P_l(x) \, dx = (P_{l+1}(x) - P_{l-1}(x))|_a^1 = P_{l-1}(a) - P_{l+1}(a), \]

(23)

where we have used that \(P_l(\pm 1) = 1 \). Then we obtain that

\[a_1 = P_0(a) - P_2(a) = \frac{3}{2} (1 - a^2), \]

(24)

and

\[a_2 = P_1(a) - P_3(a) = \frac{5a}{2} (1 - a^2). \]

(25)

d) Now let’s calculate

\[\int_{-1}^1 [f(x)]^2 \, dx = \int_{-1}^1 \sum_{l,m} a_la_m P_l(x)P_m(x) \, dx = \sum_{l,m} a_la_m \frac{2}{2l + 1} \delta_{l,m} = 2 \sum_{l=0}^{\infty} \frac{a^2}{2l + 1}. \]

(26)

Using the result obtained in Eq.(23) valid for \(l > 0 \) and Eq.(20) we find that

\[\int_{-1}^1 [f(x)]^2 \, dx = 2(1 - a^2) + \sum_{l=1}^{\infty} \frac{(P_{l-1}(a) - P_{l+1}(a))^2}{2l + 1}. \]

(27)

Problem 4:

a) We use the principle of superposition to write the total potential as the sum of the potential of the individual charges \(q_i \) located at \(r_i \) given by \(\Phi_i(r) = \frac{q_i}{4\pi\varepsilon_0 |r-r_i|} \). Then,
\[\Phi(\mathbf{r}) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{r}_1|} + \frac{1}{|\mathbf{r} - \mathbf{r}_2|} - \frac{1}{|\mathbf{r} - \mathbf{r}_3|} - \frac{1}{|\mathbf{r} - \mathbf{r}_4|} \right) \]

(28)

where the vectors \(\mathbf{r}_i \) are indicated in the figure.

b) The problem does not have azimuthal symmetry and thus, the potential has to be expanded in terms of the spherical harmonics. Since

\[\frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r^l}{(2l + 1)r_{l+1}} Y_l,m(\theta, \phi) Y_l,-m(\theta', \phi'), \]

(29)

we can replace Eq.(29) in Eq.(28) using that \(\theta_i = \pi/2 \) for all the charges and \(\phi_1 = 0, \phi_2 = \pi/2, \phi_3 = \pi, \) and \(\phi_4 = 3\pi/2. \) Since for \(r > a, r_< = a \) and \(r_> = r \) we obtain,

\[\Phi(r, \theta, \phi) = \frac{q}{\epsilon_0} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{a^l}{(2l + 1)r_{l+1}} Y_l,m(\theta, \phi)[Y_l,-m(\pi/2, 0) + Y_l,m(\pi/2, \pi) - Y_l,-m(\pi/2, \pi) - Y_l,-m(\pi/2, 3\pi/2)]. \]

(30)