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ABSTRACT

Motivated by the recent experimental realization of a minimal Kitaev chain in quantum dot systems, we present
our theoretical findings on the dynamics and fusion of MZMs at or near the “sweet spot” th = ∆ (where the
fermionic hopping th and superconducting coupling ∆ are equal). We investigated the dynamics and fusion of
MZMs using time-dependent real-space local density-of-states methods. The movement of Majoranas and the
detection of fusion channels are crucial for topological quantum computations. Additionally, we discuss our recent
discovery of exotic “multi-site” MZMs in Y -shaped Kitaev wires, which is important for the potential braiding
of Majoranas in Y -junctions formed from arrays of quantum dots. Finally, we present results on ”non-trivial”
fusion using canonical Kitaev wires at the sweet spot.
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1. INTRODUCTION

Topological superconductors (TSC) offer an ideal platform to realize exotic Majorana zero modes. These Ma-
jorana zero modes (MZMs) follow non-Abelian exchange statistics and have potential applications to realize
fault-tolerant quantum computing.1–5 The most explored experimental method for creating Majorana zero
modes is through hybrid semiconductor nanowire systems.6,7 In these systems, the MZMs are expected to ap-
pear at the edge of the nanowires by manipulating the external magnetic field in the presence of large spin-orbit
coupling and in proximity to conventional s-wave superconductors.7 However, due to the presence of disorder
and impurities, the realization of actual Majorana zero modes is still challenging.8,9 The trivial near-zero energy
states induced by disorder pose a serious hurdle in detecting the actual MZMs in the zero-bias conductance peak
experiments.9–11 Recently, an alternative approach to realize MZMs using a chain of quantum dots has been
proposed.12–14 The minimal Kitaev chain using just two quantum dots, coupled with a short superconductor-
semiconductor hybrid, has been successfully realized.15 Remarkably, in this experiment, a pair of Majorana
zero modes were observed in the tunneling conductance measurements at the “sweet spot” th = ∆ (where the
electronic hopping th and superconducting coupling ∆ are equal in magnitude).15 Very recently, using three
quantum dots, MZMs were realized, and it was found that the topological protection increased compared to the
two-site Kitaev chain.16,17 Recent progress in quantum dots, which can be precisely controlled using local gates,
presents a promising avenue for quantum information processing using MZMs.18,19 Local control of individual
quantum dots significantly reduced the effect of disorder and the detection of MZMs.15,17,19

Recent advancements in quantum-dot systems offer a promising platform for investigating the fusion and
braiding of Majorana zero modes (MZMs). These processes are important for the testing of non-Abelian statistics
of MZMs. Successful quantum computation with MZMs requires their adiabatic manipulation. Quantum-
dot systems (see Fig. 1) enable such experiments even in small-scale setups, as MZMs are fully localized at
individual sites, unlike in nanowire systems.15,17 In these quantum-dot systems, the on-site chemical potential
can be finely tuned using quantum gates, facilitating precise control over the adiabatic movement of MZMs.
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Figure 1. (a) Schematic representation of a coupled quantum-dot system designed to realize Majorana zero modes (γ).
The quantum dots (QD) are connected to a short superconductor (S) with phase (ϕi), enabling effective tuning of the
hopping parameter th and the superconducting pairing term ∆ between the quantum dots. (b) Illustration of the Y -shaped
geometry utilizing seven quantum dots with different phases ϕ1, ϕ2, and ϕ3 at each arm.

However, performing braiding experiments in strictly one-dimensional geometries is challenging, as MZMs can
fuse during their exchange.20 To conduct braiding experiments effectively, Y - or X-shaped geometries are
required.21,22 Moreover, the realization of MZMs at the sweet-spot (th = ∆) also pave the way to perform
analytical calculations for solving the MZM wavefunctions in these complex geometries.22,23 Understanding the
Majorana wavefunctions near the junctions of Y - or X-shaped configurations is important for the successful
fusion and braiding of MZMs.

The organization of the manuscript is as follows. First, we will discuss the one-dimensional quantum dot
system with the same p-wave pairing phases. Then, we will describe the exact form of Majorana wavefunctions
near the junction of Y -shaped geometry quantum dots. Next, we will address the time-dependent trivial fusion
of MZMs in a one-dimensional geometry using a time-dependent moving wall. Finally, we will present the
non-trivial fusion of MZMs using two pairs of MZMs, where the two pairs have predefined parities.

2. RESULTS

2.1 One-dimensional Kitaev chain in quantum-dot systems

The recent advancements in quantum-dot systems lead to the experimental realization of two- and three-sites
Kitaev chains.15,17 In these systems, the spin-polarized quantum-dots are coupled through superconductor-
semiconductor hybrids and are well controlled by electrostatics gates.15,17 This setup allowed the single electron
hopping t (ECT) and the triplet pairing ∆ to be controlled (by the subgap Andreev bound states residing in
the hybrid segments19) providing all the required elements to realize artificial Kitaev chains.15 The Kitaev chain
Hamiltonian for spinless fermions with hopping t and p-wave pairing ∆ can be described as:1

H =

N−1∑
j

(
−tc†jcj+1 + |∆|eiϕjcjcj+1 + h.c

)
, (1)

where cj is a spinless fermionic annihilation operator at site j and ϕk is the pairing phase on bond k. Using the
relation cj = 1√

2
e−iϕk/2

(
γI
A,j + iγI

B,j

)
, at the sweet-spot (t = ∆) and at ϕk = 0 the Kitaev chain Hamiltonian

in terms of Majorana operators can be written as:

H = −2i∆

N−1∑
j

γI
A,j+1γ

I
B,j . (2)

Interestingly, the Majorana operators γI
A,1 and γI

B,N are absent in the Hamiltonian and satisfy γI†
A,1 = γI

A,1,

and γI†
B,N = γI

B,N . Thus, these two end Majorana operators γI
A,1 and γI

B,N represent Majorana zero modes,



as intuitively expected. The signature of Majorana zero modes has been confirmed via tunneling conductance
experiments at the sweet-spot (t = ∆) in the quantum-dot experiments.15,17

2.2 Y -shape Kitaev wire in quantum-dot system

The Y -shaped geometry plays a crucial role in facilitating the potential braiding of Majorana Zero Modes
(MZMs) in quantum-dot experiments.22 We analytically solve the Y -shaped Kitaev wires at the sweet spot,
considering various superconducting phases in each arm. Remarkably, by expressing the Majorana operators
as cj = 1√

2
e−iϕk/2

(
γI
A,j + iγI

B,j

)
, we can write four distinct independent Hamiltonian’s: one for each of the

three arms (I, II, III) and one for the central region (IV). This approach allows us to independently diagonalize
and precisely solve each region at the sweet-spot.22 Depending on the superconducting phases in each arm, we
observe the emergence of exotic multi-site Majorana zero modes near the central region.

For the phases ϕ1 = π, ϕ2 = 0, and ϕ3 = 0, we identify a total of six MZMs. Specifically: (a) three single-site
MZMs are located at the edge sites, (b) one single-site MZM is found at the central site, and (c) two multi-site
MZMs are present near the central region. In contrast, when the phases are equal (ϕ1 = 0, ϕ2 = 0, and ϕ3 = 0),
we observe a total of four MZMs: (a) similar to the previous scenario, three single-site MZMs are localized at the
edge sites, but (b) only one multi-site MZM is found near the central region. We further analyzed the stability of
single- and multi-site MZMs against the repulsive interaction (V ) by separately calculating the electron and hole
components of (LDOS(ω, j)) using by the density-matrix renormalization group method (DMRG). For moderate
values of repulsive interaction (V ), our DMRG results show that the single-site edge MZMs and multi-site MZMs
exhibit nearly equivalent stability.22

In the context of braiding experiments, where it is crucial that Majorana wave functions do not overlap, it
is essential to understand the shape of multi-site Majorana wave functions when exchanging MZMs near the
junction. Our findings regarding the existence and stability of multi-site MZMs, especially against Coulomb
repulsion and deviations from the sweet spot, are valuable for developing fully functional Y -shaped junctions
composed of quantum-dot arrays. These multi-site MZMs should be detectable in quantum-dot experiments near
the sweet spots, utilizing just seven quantum dots arranged in a Y -shaped geometry (Fig. 1(b)) for tunneling-
conductance measurements.

2.3 Time-dependent fusion of MZMs in quantum-dots

Recent advancements in quantum-dot systems have created a promising platform for testing the non-Abelian
statistics of MZMs.15,17 In these systems, MZMs can be fully localized on a single site at the sweet spot,
enabling the study of their fusion and braiding even in small setups. Fusion and detection of MZMs in quantum-
dot systems are more convenient compared to braiding experiments, which require complex geometries. MZMs
follow the fusion rule (γ × γ = I + Ψ), meaning two MZMs (γ) can result in either a vacuum state (I) or a
fermion (Ψ), demonstrating their non-Abelian nature.25 The quantum-dot systems allow for two distinct fusion
methods: “trivial” and “non-trivial” (Fig. 2). Understanding these methods will be useful for the readout of the
topological quantum states in the topological quantum computing processes.

2.3.1 Trivial fusion of MZMs in quantum-dots

To perform a trivial fusion of MZMs, one can utilize a single pair in a chain by moving one edge MZM towards
the other using a moving potential wall (or well), as illustrated in Fig. 2(a). This fusion process is deterministic
as it occurs within the same pair with well-defined parity (P12 = +1 or −1). Following the trivial fusion, the
MZMs either form a complete electron or a complete hole. Achieving this fusion requires the slow movement of
Majoranas, which can be controlled via time-dependent local gates connected to individual quantum dots. To
monitor the dynamics and outcomes of this fusion, we calculated the time-dependent real-space local density of
states, LDOS(ω, t, j), for both electrons and holes.24 By employing a time-dependent moving wall, as described
in Ref.,24 we can move the right edge MZM to the left to facilitate their fusion. The fusion outcomes depends on
the initial state’s parity.24 For P12 = −1, the electron component of the local density-of-states exhibits a sharp
peak near ω = 0, and the charge density at site j = 1 reaches one, indicating the formation of a single electron
post-fusion. Conversely, for P12 = +1, the charge density at site j = 1 drops to zero, and the hole component
of the local density-of-states shows a sharp peak near ω = 0, signifying the formation of a hole. To ensure the
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Figure 2. (a) Sketch of the trivial fusion using two Majorana zero modes at the sweet-spot th = ∆. (b)Sketch of the
non-trivial fusion using two separate pairs of MZMs at the sweet-spot. The left part of the system has a pre-defined parity
P12 while the right part has parity P34.

formation of a full electron post-fusion, we also determine the optimal speed range for moving the Majoranas.
This calculation helps minimize nonadiabatic effects and prevent decoherence-induced poisoning (see Ref.24).

2.3.2 Non- trivial fusion of MZMs in quantum-dots

To perform the non-trivial fusion one needs to fuse the Majoranas belonging to different pairs of MZMs each with
pre-defined parities. Interestingly, in the non-trivial case, the fusion outcomes are probabilistic, not determinis-
tic.25–27 Compared to the trivial case, the non-trivial fusion can produce both electron and hole. As shown in
Fig. 2(b), to perform non-trivial fusion of MZMs, we need at least two-pairs of MZMs at the sweet-spot th = ∆
(four MZMs total). We probe the fusion outcomes by calculating the time-dependent local density-of-states
focusing on the central sites, using models simulating interacting quantum-dot systems. In the quantum-dot ex-
periments, the hopping and superconducting coupling between the quantum dots can be tuned by changing the
electrostatic gates.19 To observe the time-dependent non-trivial fusion, we tune the time-dependent hopping and
superconducting terms for the central part of the quantum-dot arrays, (see Fig. 2(b)). Using the time-dependent
exact-diagonalization method for the interacting electrons, we studied the non-trivial fusion of MZMs.28 In the
case of the two pairs of MZMs initialized with the same pairing phases ϕ1 = ϕ2 = 0, with increase in time, we find
equal height peaks in the electron and hole components of the LDOS(ω, t). These results show the formation of
both electron Ψ and vacuum channels during the non-trivial fusion of MZMs. We also have studied the Majorana
fusion in a π-junction setup, where we consider the pairing term −∆ for the left array, and +∆ for the right
array. With increase in the time-dependent hopping and pairing terms ∆(t) between the two initialized pairs
of MZMs, we find that the MZMs near the π-junction do not fuse. Surprisingly, one MZM remains a localized
single-site MZM, and another transforms into a multi-site MZM. The multi-site MZM is located on two sites
with equal amplitude.28

3. CONCLUSION

Quantum-dot systems provide an adaptable platform for investigating the dynamics, fusion, and braiding of
Majorana zero modes (MZMs). At the sweet-spot where (th = ∆), we obtain an exact solution for a Y -shaped
quantum-dot configuration. This study marks the first observation of multi-site Majorana zero modes within a
Y -shaped quantum wire. Our findings suggest that both single-site edge MZMs and multi-site MZMs exhibit
similar stability against Coulomb repulsion. Through time-dependent local density-of-states analysis, we track
the movement and fusion of Majoranas. In cases of trivial fusion, determined by the initial state parity, the
outcome is either a complete electron or a complete hole. Conversely, non-trivial fusion results in a probabilistic
outcome, with equal likelihoods of forming electrons or holes. The recent experimental progress in quantum-dot
systems paves the way for future braiding experiments using a minimal number of quantum dots arranged in a
Y -shaped geometry.
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