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Abstract
The study of phonon dynamics and its interplay with magnetic ordering is crucial for
understanding the unique quantum phases in the pyrochlore iridates. Here, through inelastic
x-ray scattering on a single crystal sample of the pyrochlore iridate Eu2Ir2O7, we map out the
phonon excitation spectra in Eu2Ir2O7 and compare them with the theoretical phonon spectra
calculated using the density functional theory. Possible phonon renormalization across the
magnetic long-range order transition is observed in our experiments, which is consistent with
the results of the previous Raman scattering experiments.

Keywords: spin–orbit coupling (SOC), phonon excitations, inelastic x-ray scattering (IXS),
density functional theory

1. Introduction

The explorations of the 4d and 5d heavy transitional metal
electronic systems represent a cutting-edge research domain
in condensed matter physics. Due to a unique amalgama-
tion of extended 5d/4d orbitals [1], strong spin–orbit coupling
(SOC), and geometrically frustrated lattices [2], this family
of heavy transitional metal materials offers a rich platform to
search for exotic correlated states. Till now, a plethora of novel
phases have been discovered in the 4d- and 5d-based mater-
ials, including quantum spin liquids [3–5], metal–insulator
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transitions [6, 7], Weyl semimetals [8], topological insulat-
ors [9, 10], non-Fermi liquids [11], magnetic monopole-like
phase [12].

Among the heavy transitional metal electronic systems, the
pyrochlore iridates, R2Ir2O7 (R = Y and rare earth ions) [13–
18], have drawn great interests. The structure of the pyrochlore
iridates is presented in figure 1(a), where the Ir4+ ions form
a pyrochlore lattice with corner-sharing tetrahedra. The Ir4+

ions of the low-spin configuration form an effective doublet
of J = 1/2, where J is the total angular momentum [19].
For compounds with a relatively large R3+ ion radius, a
metal–insulator transition (MIT) has been observed, where
the transition temperature, TN, can be tuned by various
external parameters including chemical composition [20–22],
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Figure 1. (a) Crystal structure of the pyrochlore iridates. The large
blue sphere is the Eu site. The large green sphere inside the
polyhedra is Ir. The small grey sphere is O. (b) The first Brillouin
zone and high symmetry points of the face-centered cubic (FCC)
lattice. (c) DFT calculations of the phonon dispersion along the
high-symmetry directions Γ-W-X-Γ-L.

pressure [23–25], and magnetic field [26–29]. In the insulating
phase, the magnetic moments of the Ir4+ ions form an ‘all-
in/all-out’ (AIAO) magnetic long range-order, which can be
viewed as a solidified phase of magnetic monopoles [30]. For
compounds with a relatively small R3+ ion radius, the para-
magnetic phase at temperatures above the ordering transition
become insulating, indicating a strong correlation between the
chemical pressure and electronic bands [31].

The lattice degree of freedom of the pyrochlore iridates
also contains rich information about the spin correlations
because the lattice is directly connected to the orbitals and,
consequently, indirectly influences the spins through SOC [32,
33]. Recent Raman scattering experiments on Eu2Ir2O7 and
the related compounds revealed significant renormalization
of the phonon frequencies together with the emergence of
magnon modes below the magnetic transition temperature, TN
[18, 34]. As the noncollinear character of the AIAO structure
allows a linear coupling between the magnons and phonons,
hybridized spin-lattice excitations may emerge if the magne-
toelastic coupling is strong [35].

In this work, we performed non-resonant inelastic x-ray
scattering (IXS) experiments to map out the phonon dispersion
in Eu2Ir2O7 and compare it to the theoretical spectra calcu-
lated by the first-principle density functional theory (DFT).

Possible phonon renormalization across TN is observed at
selected wave vector transfers near the Brillouin zone center,
although hybrid magnon-phonon excitations are not resolved
in our experiments possibly due to their relatively low scatter-
ing cross sections.

2. Methods

Our IXS experiments were performed on the RIKENQuantum
NanoDynamics Beamline, BL43LXU [36], at the SPring-8
synchrotron light source in Japan. This beamline provides
world-leading intensity for IXS experiments using 3× 5 m
insertion devices [37, 38] in a small, 50 µm diameter
beam spot. A piece of KF-flux grown Eu2Ir2O7 single crys-
tal [39], with a dimension of 0.4 × 0.4 × 0.1 mm3, was used
for the experiments. The reflection scattering geometry was
employed due to the relatively short attenuation length of∼20
µm at an incoming x-ray energy of 20 keV. The (111) sur-
face of the crystal was polished and vertically attached to
the sample holder, which was then aligned with the (HHL)
plane horizontally. The 24 analyzer array allows parallel meas-
urements over a large area of momentum transfers. The Si
(11,11,11) setup with a resolution of≳1.3 meV (depending on
analyzer) was employed. A closed cycle cryostat was mounted
in the Eulerian cradle to access temperatures down to ∼50 K.
The IXS energy scale is expected to be accurate to 0.5 % based
on calibration against a standard [40].

Theoretical phonon spectra for Eu2Ir2O7 at zero tem-
perature were calculated using the first-principles DFT as
implemented in the Vienna ab initio simulation package
(VASP). The projector augmented wave method with the
generalized gradient approximation and the Perdew–Burke–
Ernzerhof exchange potentials were employed [41–44]. The
Debye Waller factor was not considered in our calculations.
The plane-wave cutoff energy was set as 600 eV and the k-
point mesh was set as 6× 6× 6 for the conventional cell of
the cubic Fd3m phase (No. 227) of Eu2Ir2O7. For the struc-
tural optimization in the paramagnetic phase, the lattice con-
stant was fixed at the experimental value of a= 10.167 Å, and
the atomic positions were fully relaxed until the Hellman–
Feynman force on each atom was smaller than 0.001 eVÅ−1.
Following the previous study [34], our phonon calculations
do not consider the magnetic order. Force constants were
calculated by density functional perturbation theory [45, 46]
as implemented in VASP. Phonon dispersion relations were
obtained using the PHONONPY software in a primitive unit
cell [47, 48].

3. Results and discussions

Figure 1 presents an overview of the calculated phonon disper-
sion along the high symmetry lines in reciprocal space. The
absence of imaginary frequencies corroborates the accuracy
of our structural optimization. Altogether 66 phonon bands
are observed in our calculations, which is consistent with
the number of phonon modes for 22 atoms per primary unit
cell. At the Brillouin zone center, i.e. the Γ point, there are
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Table 1. Comparison between the experimentally determined and
calculated energies of the Raman-active phonon modes for Eu2Ir2O7

at room temperature. Energies are measured in units of meV.

T2g(1) Eg T2g(2) A1g T2g(3) T2g(4)

experimental [34] 37.5 41.8 47.1 63.0 67.3 84.3
previous cal. [34] 39.3 46.0 51.7 65.7 72.9 83.9
our DFT cal. 39.9 47.2 48.4 66.1 72.9 87.2

Table 2. Comparison between the experimentally determined and
calculated energies of the infrared-active T1u phonon modes
Eu2Ir2O7 at room temperature. Energies are measured in units of
meV.

experimental [34] 14.2 18.5 25.6 42.1 53.8 60.5 78.5
previous cal. [34] 13.9 18.6 27.3 45.4 57.2 61.6 77.6
our DFT cal. 14.0 18.1 26.6 41.9 54.8 64.2 80.0

6 Raman-active phonon bands according to group-theoretical
analysis [34],

Γop = A1g+Eg+ 4T2g. (1)

These Raman active modes are indicated in figure 1(c). As
compared in tables 1 and 2 for the Raman- and infrared-active
modes, respectively, our calculated frequencies are in good
agreement with the previous DFT calculations and the exper-
imental observations at T = 300 K [34]. For the Eg mode that
is the focus of our present study, the calculated and exper-
imental energies are 47.2 and 41.8 meV, respectively. This
slightly overestimated energy may arise from the coupling
between phonons and low-energy excitations of the valence
electrons [34], which is not included in DFT calculations.

Figure 2 compares the experimental and calculated IXS
cross sections along the (66L) and (HH8) directions around
(668) r.l.u. in reciprocal space, with r.l.u. representing the
reciprocal lattice unit. This area was selected for our IXS
measurements due to the relatively low scattering intensity
of the Bragg peak and acoustic phonon modes. The calcu-
lated spectra include convolutions with a pseudo-Voigt func-
tion with a full width at half maximum matching that meas-
ured form plexiglass from the same analyzer with the same
momentum acceptance. While more correctly one should use
the full resolution function (e.g. as determined by the method
of [49]), the pseudo-Voigt approximation was considered suf-
ficient for the present work. A comparison between the exper-
imental and calculated cross sections at (668) r.l.u. up to
∼40 meV is shown in figure 3, where the red line is the
calculated cross section plus a pseudo-Voigt peak at E= 0.
The observed phonon modes at the Brillouin zone center can
be identified as the T2u (8.64), Eu (12.08), T1u (13.94), T1u
(18.12), T2u (20.10), Eu (25.40), T1u (26.64), A2u (27.13), T1g
(32.34), A2u (35.16), and T2g (39.95) modes, where the calcu-
lated energies in units of meV are shown in brackets following
each mode. The dispersion of the phonon excitations, together
with their IXS cross sections, are well described by our DFT
calculations.

Figure 2. (a) Experimental and (b) calculated phonon IXS spectra
along the (66L) direction. The experimental data are collected at
T = 50 K. (c) Experimental and (d) calculated IXS spectra along the
(HH8) direction. The black dots in panels (a) and (c) indicate the
positions where IXS spectra were collected. The same colorbar is
employed for all panels.

Figure 3. Experimental (black dots) and calculated (red line)
phonon spectra at momentum transfer Q= (6,6,8) measured at
T = 50 K. The calculated IXS cross section is convoluted by a
pseudo-Voigt instrumental resolution function. The scattering
intensity is shown in arbitrary units (a. u.). The phonon modes
corresponding to each peak are indicated, with their calculated
energy shown by vertical bars at the bottom. The height of the
vertical bars corresponds to the calculated IXS cross sections
normalized by the cross section of the Eu mode at E= 25.4 meV.
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Figure 4. The simultaneously detected 24 Q points in reciprocal space with the targeting detector fixed at Q= (6.114,6.088,8.123) r.l.u. as
indicated by the asterisk. Red dots correspond to the selected 12 positions that are presented in figures 5 and 6.

Figure 5. Representative IXS spectra of Eu2Ir2O7 measured at T = 50 K with the target detector fixed at Q= (6.114,6.088,8.123) r.l.u.
Solid red lines represent the calculated phonon cross section convoluted by a pseudo-Voigt instrumental resolution function.

As the detector bank of the IXS spectrometer at the
BL43LXU beamline is composed of 24 detectors that are
arranged in a 4-by-6 array, a series of IXS spectra can be
collected simultaneously at Q positions around the target
wavevector transfer. For a target wavevector transfer of Q=
(6.114,6.088,8.123) r.l.u., the simultaneously detectedQ pos-
itions are plotted in figure 4, where the target wavevector pos-
ition is marked by an asterisk.

Figure 5 presents the IXS spectra collected at 12 represent-
ative Q positions around (6, 6, 8) r.l.u. measured at T = 50 K,
below TN ∼ 115 K. The Q position for each panel is indic-
ated in figure 4 as red dots. The red lines in figure 5 rep-
resent the calculated cross-sections plus a pseudo-Voigt peak
with a FWHM of 1.3 meV at E= 0. The experimental data
shown in figure 5 reveals that in the magnetically ordered
phase, the strongest IXS cross section is observed in an energy
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Figure 6. Temperature-dependence of the IXS spectra for Eu2Ir2O7 measured at T = 50 K, 100 K, and 150 K.

transfer range of E∼ [10,30] meV, above which the scat-
tering intensity decreases by an order of magnitude up to
E= 50 meV. The calculated spectra reproduce the main fea-
tures of the experimental data, although deviations of∼2 meV
are observed for the strong modes at 25 and 33 meV. These
deviations appear in all detector banks and may be ascribed
to the difference in lattice constants employed in our DFT
calculations.

Figure 6 compares the IXS spectra for the same 12 Q pos-
itions at T = 50, 100, and 150 K after the thermal factor cor-
rection. No strong variation is observed for the main phonon
modes in the energy range of [10, 30] meV, which confirms
the absence of structural distortion at TN ∼ 115 K as revealed
in the neutron and x-ray diffraction experiments [16, 50, 51].
Focusing atQ= (6.114,6.088,8.123) r.l.u., for which the IXS
data in the energy range of [15, 30] meV and [30, 50] meV is
reproduced in figure 7 in linear scale, the weak peak observed
at E= 38.8 meV at T = 50 K gradually shifts to E= 42.8 meV
at T = 150 K, leading to a double peak feature at T = 100 K.
By fitting the IXS spectra atQ= (5.974,5.944,8.032), (6.114,
6.088, 8.123), and (5.814, 6.095, 8.039) r.l.u. at T = 150 K, the
energy of this weak mode is interpolated to be 41.8 meV at
the ⌈ point, which agrees well with the energy of the Eg mode
observed at similar temperatures in the previous Raman scat-
tering experiments [34]. Therefore, we can ascribe the energy
shift of the weak peak to the renormalization of the Eg mode.
Considering its rather weak intensity, further IXS experiments

with better statistics will be required to resolve the dispersion
of the Eg mode as a function of momentum transfer and tem-
perature.

As proposed in the previous studies [18, 34], the renor-
malization of the Eg mode, together with its relatively broad
width, can be explained by the magnetoelastic effect. In this
scenario, the development of a magnetic long-range order
at TN ∼ 115 K affects the vibrations of the magnetic ions
and therefore modulates the energy of the phonon excita-
tions. According to the Raman scattering experiments [18,
34], a magnon mode at ∼26 meV appears at temperatures
below TN, which may also cause a softening of the Eg phonon
mode through the magnon-phonon hybridization as a con-
sequence of themagnetoelastic effect in the dynamical regime.
The distribution in the magnitude of the ordered moment,
the size of the magnetic domains, or even the lifetime of the
magnon excitations, will induce a variance in the energy shift
of the Eg mode, thus explaining its relative broad width. When
the magnetoelastic coupling is strong enough, the magnon
mode at ∼26 meV may possess a sizable phonon compon-
ent that can be directly detected in IXS experiments [35].
Following this scenario, we searched for emergent hybridized
spin-lattice excitations around E∼ 26 meV in our IXS specra.
However, as this energy range overlaps with the strong con-
ventional phonon modes, it is difficult to confirm the existence
of the hybridized spin-lattice excitations using our current
IXS data.
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Figure 7. Comparison of the IXS spectra for Eu2Ir2O7 at
Q= (6.114,6.088,8.123) r.l.u. measured at T = 150 (blue), 100
(red) and 50 K (yellow) in the energy ranges of (a) 15–30 meV and
(b) 30–50 meV. Solid lines represent fits to the Lorentzian functions
and are guide to the eyes. For clarity, the 100 and 150 K data are
shifted along the y axis by 0.1 and 0.2 a. u. respectively in panel (a),
and by 0.01 and 0.02 a. u. respectively in panel (b). The dashed lines
at 42.4 and 38.6 meV correspond to the positions of the Eg mode
observed in Raman scattering at T = 160 and T = 60 K, respectively.

4. Conclusion

In conclusion, phonon excitations of the pyrochlore iridate
Eu2Ir2O7 have been investigated using the non-resonant IXS
technique. Comparisons to the DFT calculations reveal that
the cross sections are dominated by the Raman-inactive modes
in an energy transfer range of [10, 30] meV. Analysis of
the IXS spectra measured at temperatures below and above
TN reveals possible phonon renormalizations across the long-
range-order transition as reported in the previous Raman scat-
tering experiments.
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