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Valence bond (VB) states as the formation mechanism of Cooper pairs, eventually leading to high-
temperature superconductivity, remain a controversial topic. Although various VB-like states find
variational relevance in the description of specific spin models and quantum spin liquids, in the realm
of many-body fermionic Hamiltonians, the evidence for such states as ground states wave functions
remains elusive, challenging the valence-bond pairing mechanism. Here, we present evidence of a
VB ground state with pairing tendencies, particularly at finite doping. We achieved this for the
generic two-orbital Hubbard model in low dimension, where the VB states can be associated with the
presence of the topological order manifested by edge states. Utilizing density-matrix renormalization
group calculations, the study reveals key properties akin to those observed in superconductors’ phase
diagrams, such as pairing restricted to the regime of small but nonzero doping, presence of coherent
pairs, and density oscillations in the charge sector.

In 1987, just one year after the discovery of high-
temperature superconductivity (high-Tc SC) in cuprates
[1], Philip W. Anderson proposed [2] his famous res-
onating valence bond (RVB) state as the ground state
wave-function to describes the properties of such com-
pounds. In essence, the RVB represents a quantum
liquid of valence bonds, i.e., a collection of spin sin-

glets, |ϕ⟩ = PD

∑
j,ℓ

[
a(j − ℓ) c†j,↑c

†
ℓ,↓

]L/2

|0⟩, distributed
over the lattice in a way that preserves its spatial sym-
metries (i.e., no long-range order). Here |0⟩ represent the
vacuum, c†ℓ,σ is the creation operator of an electron with
spin projection σ at site ℓ, PD is the Gutzwiller projector
preventing double occupancy, while a(r) are some (lat-
tice specific) coefficients. Note that the singlets are not
necessarily nearest neighbours and can span over a few
lattice sites, though their amplitude is expected to decay
exponentially with distance. Such a state can, in prin-
ciple, describe the Mott insulators’ spin arrangement for
the half electronic filing [3] and, more importantly, allow
for mobile Cooper pairs under hole or electron doping
(with each pair of holes/electrons ”replacing” one of the
singlets) [4, 5].

Anderson’s idea has heavily influenced the strongly
correlated community for almost 40 years. It sparked
enormous interest in the field of quantum magnetism,
especially in the antiferromagnetic (AFM) Heisenberg
models, which properly describe the main experimen-
tal findings of undoped cuprates [6, 7] and parent com-
pounds of some iron-based superconductors [8]. However,
RVB and even more generic valence bond solids (VBS,
which break some of the lattice symmetry) are rare as
the ground states wave-functions of the many-body sys-
tems. For the spin models, notable examples of such
states exist: (i) it is by now established that quantum
spin liquids [9] realized in geometrically frustrated mag-
nets [10, 11] can be described by the RVB wave function.

(ii) The ground states of the one-dimensional (1D) S =
1/2 Heisenberg model with nearest- and next-nearest-
neighbour interaction (the so-called Majumdar-Ghosh
model) [12, 13] or the two-dimensional (2D) Shastry-
Sutherland model [14] are an exact VBS states. (iii) Fi-
nally, it was shown [15, 16] that the S = 1 Heisenberg
chain with biquadratic interactions can be thought of as
a collection of coupled S = 1/2-like singlets (Fig. 1a).
The latter is encapsulated in the Affleck-Kennedy-Lieb-
Tasaki state (AKLT state), which hosts the famous topo-
logical Haldane edge states. It is important to note that
the AKLT state is a perfect VBS (with correlations van-
ishing at a distance r ≃ 2). At the same time, the plain
S = 1 Heisenberg model in 1D resembles a gapped RVB
state with exponentially decaying correlations [17].

In the context of fermionic Hamiltonians (with the
fermionic Hubbard model as a prime example), evidence
of a VB-like state as the ground state of the many-body
system is still lacking. Although such states are antici-
pated to capture many properties of quantum paramag-
nets (systems with short-ranged AFM correlations), the
challenge is demonstrating that the ground state has a
form of VB liquid. Consequently, the valence-bond pair-
ing mechanism, as envisioned by Anderson, is questioned.
Here, we report the evidence that the ground state of
the generic two-orbital Hubbard model in low-dimension
realizes a VB-like state. The latter maintains the topo-
logical properties of the AKLT state and, in addition,
becomes superconducting at finite doping. Namely, we
show that the topology and pairing are intertwined in
the doped fermionic Haldane chain. Although limited
to 1D considerations, our density-matrix renormalization
group (DMRG) calculations reveal most of the properties
expected of the high-Tc phase diagram, i.e., (i) a large re-
gion of finite (negative) binding energy in the interaction-
doping phase diagram; (ii) long-range of pair-pair corre-
lations; and (iii) pair-density-wave (PDW). We also show
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Figure 1. Valence-bond induced pairing. a Sketch of the AKLT state (top) and the orbital-RVB state of the doped
one-dimensional two-orbital Hubbard model (lower). Paired holes are presented as circles. b Interaction U – doping x phase
diagram of the string order parameter Os evaluated in the bulk (at distance ℓ = L/2) of the L = 60 sites system. The
points depict values at which extrapolated to L → ∞ spin gap ∆S opens or closes. c Phase diagram for binding energy
ϵB = Egs(N)− 2Egs(N − 1) + Egs(N − 2), where Egs(N) is the energy of the fermionic system with N electrons (L = 60).
Points depict values at which the extrapolated to L → ∞ binding energy crosses the zero value. Lines are a guide to the eye.

that (iv) all of these phenomena are induced by the VB
ground state akin to the AKLT state of S = 1 Heisenberg
chains. Since the latter exhibits topological properties,
the presence of VB-type states can be easily identified
via the presence of the topological order.

Our investigation is based on the two-orbital (γ = 0, 1)
Hubbard-Kanamori model on the 1D lattice:

H = t
∑
γγ′ℓσ

(
c†γℓσcγ′ℓ+1σ +H.c.

)
+ U

∑
γℓ

nγℓ↑nγℓ↓ + U ′
∑
ℓ

n0ℓn1ℓ

− 2JH
∑
ℓ

S0ℓ · S1ℓ + JH
∑
ℓ

(
P †
0ℓP1ℓ +H.c.

)
, (1)

with P †
γℓ = c†γ↑ℓc

†
γ↓ℓ. In the following, we will consider

its most generic version, with band degeneracy. The
first term describes the system’s kinetic energy (with
t = 0.5 [eV] and kinetic energy span W = 4t as a unit of
energy). The second term describes intra- (U) and inter-
orbital (U ′) on-site electron repulsion. The last term
originates in multi-orbital physics: JH accounts for the
ferromagnetic Hund coupling between spins Sγℓ at dif-
ferent orbitals, maximizing the total on-site spin. The
above model preserves SU(2) symmetry (provided that
U ′ = U − 5/2JH [18]), and we will consider JH/U = 1/4
in the Sz

tot = 0 magnetization sector for various hole dop-
ing levels x = 1− n, where n = N/2L is electron density
(with N as a number of electrons in the L site system).
The quasi-1D (ladders) and 2D versions of the above
model are extensively used in the context of various corre-
lated superconductors like iron pnictides, chalcogenides,
ruthenates, iridates, as well as heavy-fermion materials.
The single-band version of the above Hamiltonian is also
considered to be a minimal model for cuprates. In the
following, we will present results obtained with the help
of the DMRG method on the open boundary system (see

Supplementary Information for details).
At half-filling x = 0 and in the limit of large interaction

strength U ≫ W , i.e., in the region where double occu-
pancies are not present and the average on-site magnetic
moments are well developed S2 = S(S + 1) ≃ 2, the low
energy physics of the two-orbital Hubbard model can be
described by the S = 1 AFM Heisenberg Hamiltonian
[19]. The ground state of the latter can be pictorially
expressed (Fig. 1a) by on-site triplets of S = 1/2-like
objects, i.e.,

|1i⟩ = | ↑i↑i⟩ , | − 1i⟩ = | ↓i↓i⟩ ,

|0i⟩ =
1√
2
(| ↑i↓i⟩+ | ↓i↑i⟩) ,

which are coupled in a valence bond way between sites,
(| ↑i↓i+1⟩ − | ↓i↑i+1⟩). Here |1, 0,−1⟩ represent S = 1
states at site i, while |σiσ

′
j⟩ with σi =↑, ↓ can be thought

as a state of two electrons at different orbitals in the
context of the two-orbital Hubbard model. The above
VBS (AKLT state) is not an exact ground state of the
isotropic S = 1 AFM model. Still, it can be adiabat-
ically connected to it without closing the spin gap and
preserving its unique properties, i.e., the presence of the
topologically protected Haldane edge states (unpaired by
valence bonds S = 1/2 states at the boundary of the open
system). It was recently shown [19] that such a descrip-
tion of the two-orbital Hubbard model in 1D is valid even
for a relatively small value of interaction, U ≃ W/2, in
the region where magnetic moments are not fully devel-
oped S2 ≪ 2 and charge fluctuations are still present.
Such behaviour can be monitored with the help of the
string order correlation function:

Os(ℓ) = −⟨gs|Sz
m exp

(
iπ

m+ℓ−1∑
n=m+1

Sz
n

)
Sz
m+ℓ |gs⟩ , (2)

with Sz
m = Sz

0m + Sz
1m as the total spin at site m, which
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Figure 2. String order correlations Os. a Distance dependence of Os(ℓ) for various interaction strength U/W and half-filled
system x = 0.0. Change in the behaviour of Os is evident for U/W ≃ 0.5, i.e., for the predicted [19] transition to the topological
Haldane phase in which the string order is not decaying for ℓ → ∞. b,c Similar results for hole doped system: x = 0.1 and
x = 0.2, respectively. All results evaluated for L = 80 site system. d,e Finite-size scaling (L = 40, 60, 80) for doped systems,
d x = 0.1 and e x = 0.2, close to the transition. f Amplitude of the charge density oscillations (L = 60). Lines represent the
same guide to the eye as in Fig. 1.

serves as the order parameter of the AKLT state in the
ℓ → ∞ limit (i.e., breaking of the discrete Z2×Z2 hidden
symmetry).

Introduction of the holes into the AKLT state is a
nontrivial task. In principle, two scenarios are possible:
the formation of ”rigid” on-site holes |hihi⟩ in the AFM
S = 1 background or the pair of holes transforming two
of the S = 1 on-site triplets into two S = 1/2 objects,
e.g.,

| ↑i↓j⟩ − | ↓i↑j⟩ → | ↑i hj⟩ − |hi ↓j⟩ . (3)

In the atomic limit, the former scenario is favoured by
the Hund exchange JH since it’s maximalising the aver-
age magnetic moments. On the other hand, the latter
case - with one hole per site - is preferred by the inter-
orbital repulsion U ′ term in the Hamiltonian. To resolve
this issue, we monitor the behaviour of the ground state
with doping x and interaction U by evaluating the string
order parameter Os(ℓ). Detailed distance dependence is
presented in Fig. 2, while Fig. 1b depicts the phase di-
agram [obtained from the bulk value of Os(L/2)]. For
dopings x <∼ 0.35, one can observe a region where the
string order parameter is finite, excluding the ”rigid” hole
scenario which would break the AFM chain. More im-
portantly, our results are also consistent with one hole
per site scenario, i.e., with (two) holes replacing one of

the valence bonds (see Eq. 3). For a few holes away from
half-filling, x = 0, such state was coined the orbital-RVB
[20–22]. Here, we extend this definition to rather large
doping levels, x ≃ 0.35, and show that its properties are
consistent with the valence-bond pairing mechanism.

For x = 0 (half-filling), one can observe (Fig. 1b) a
finite string-order parameter for all U/W >∼ 0.5 (with
U → ∞ limit given by the S = 1 Heisenberg model),
while for x ̸= 0 this is true only in a finite region of in-
teraction strength U . One can understand the lower (at
small U) topological phase transition (from trivial para-
magnetic to topological orbital-RVB state) as an effect of
interaction U strengthening the magnetic moments S and
decreasing the charge fluctuations. On the other hand,
the upper (at large U) transition is associated with the
change in the spin-spin correlations from AFM (incom-
mensurate at finite x) to ferromagnetic (FM) ordering
due to double-exchange like physics in the large Hund
limit for x ̸= 0 [23, 24]. In Supplementary Information,
we also present the analysis of the correlations between
the system’s edges, confirming the presence of topologi-
cally protected edge states, and the spin-spin magnetic
structure factor analysis confirming the AFM to FM
transition at large U .

The spatial dependence of the string order parameter
Os(ℓ) indicates the presence of pronounced oscillations
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for x ̸= 0 (see Fig. 2). We associate them with the pres-
ence of Friedel oscillations in the charge sector (due to the
open boundary system), visible also in the site-resolved
electron density nℓ = n0ℓ + n1ℓ (see the Supplementary
Information). In Fig. 2f, we present the spatial standard

deviation of the density σn =
√
(1/L)

∑
ℓ n

2
ℓ − n2, re-

lated to the amplitude A of the cosine-wave, σn ≃ A/
√
2.

In the topologically trivial region, U <∼ W and x >∼ 0.2 we
find the ”standard” 2kF = πn = π(1 − x) ∝ πx charge-
density-wave oscillations of weakly interacting system.
Interestingly, in the region where we find finite Os ̸= 0
(U ∼ 2W , x <∼ 0.35), our results indicate that the charge
oscillates with 2πx wave-vector. The latter is consistent
with a pair-density wave (PDW) with 4kF oscillations
[25–27] (leading to two doped holes per one minimum in
oscillation). This indicated that the PDW accompanies
the doped orbital-RVB and is most pronounced at doping
x ≃ 0.15.

Our results show that the orbital-RVB state remains
robust even for large doping x ≃ 0.3 at U ≃ 4W . In
Fig. 1c, we contrast this behaviour with the binding en-
ergy ϵB, where a negative value signals the presence of
bound pairs of holes (or electrons for x < 0, due to the
particle-hole symmetry of the considered model). The
significant overlap in the interaction-doping phase dia-
gram between the finite string order, Os ̸= 0, and nega-
tive binding energy, ϵB < 0, indicates that the VB struc-
ture of the ground state and bounded pairs coexist. Con-
sequently, the latter are correlated due to the former (see
Fig. 1a). The above behaviour is in accord with the sce-
nario envisioned by Anderson’s proposal: upon doping,
the system minimises its energy by breaking a minimal
amount of coupled singlets (valence bonds) [28]. Inves-
tigating the spin gap ∆S can also confirm this picture.
In the U ≫ W limit and for x = 0, i.e., when the
S = 1 Heisenberg model should properly describe the
low-energy excitations, one expects the famous Haldane
gap ∆S=1 ≃ 0.41J of the AKLT state, with spin exchange
J = 2t2/(U+JH) [19]. For finite doping, our results indi-
cate (Fig. 3a) that the spin gap remains finite ∆S ̸= 0 in
the same region where the string order is finite (see also
points in Fig. 1b). Interestingly, the VB-induced pair-
ing (as measured by negative binding energy) is found
for the electron-electron interaction strengths U , which
are ”just below” the large interaction expansion, i.e., be-
low the J(U) ∝ 1/U energy scale which gives the proper
description of the spin excitations.

It is important to note that the presence of the
bounded pairs does not necessarily imply superconduct-
ing tendencies. The latter requires non-vanishing long-
range correlations in the thermodynamic limit L → ∞.
One can monitor this with Cooper pair susceptibility

CP(ℓ) =
1

L− ℓ

∑
i,γ ̸=γ′

〈
∆†

iγγ′∆i+ℓγγ′

〉
, (4)

0.00

0.02

0.04

∆
S

(e
V
)

0.00

0.03

0.06

1 10

−
ǫ B

(e
V
)

U/W

x = 0.0
x = 0.1
x = 0.2
x = 0.3
∆S=1 J

a Spin gap ∆S

x = 0.0
x = 0.1
x = 0.2
x = 0.3

b Binding energy ǫB

Figure 3. Spin gap and binding energy. Extrapolated to
L → ∞ a spin gap ∆S = Egs(S

z
tot = 2)−Egs(S

z
tot = 0) and b

binding energy −ϵB. Dashed line in a indicates Haldane gap
∆S=1 ≃ 0.41J with J = 2t2/(U + JH).

where ∆†
iγγ′ represent singlet pairs between nearest-

neighbour sites at different orbitals, ∆†
iγγ′ = c†γi↑c

†
γ′i+1↓−

c†γi↓c
†
γ′i+1↑. Such a pairing is consistent with doping of

the orbital-RVB state described above and with earlier
numerical investigations [20]. Our results indicate two
distinct behaviors; see Fig. 4. For the trivial (non-VB)
state (Fig. 4d), we observe the expected exponential de-
cay of pair-pair correlation CP(ℓ) ∝ exp(−ℓ/ξP), with
some size independent correlation length ξP. The nature
of CP(ℓ) is vastly different in the topologically nontriv-
ial region. We find that correlation length increases with
system size, ξP(L) ∝ Lα with α ≃ 1 (Fig. 4e). This in-
dicates that even in the thermodynamic limit L → ∞,
the pairs in our VB state are correlated at distances of
the order of the system size, again confirming Ander-
son’s RVB pairing scenario. Furthermore, the analysis
of the ξP value for a finite-size system (Fig. 4f) confirms
that the correlation length in this region becomes large
ξP(L = 60) ∼ 20.

Since our results are obtained on the one-dimensional
two-orbital model with total S = 1 magnetic moments in
the U ≫ W limit, the relevance of our results to cuprates
is unknown (fundamentally considered as a single-orbital
2D system with S = 1/2). However, it is well established
that the multi-orbital nature of the Fermi surface plays
a crucial role in the properties of iron-based supercon-
ductors. Consequently, our results are relevant for the
latter. Consider the flagship iron-based superconductor
Fe(Se,Te) [29, 30]. The magnetism of this compound
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Figure 4. Pair-pair correlation. a,b,c Doping x dependence of the pair-pair correlation function CP(ℓ) for U/W =
1.0, 1.8, 3.2, respectively (L = 80 data). d,e Finite-size scalling L = 40, 60, 80 of CP(ℓ) in d trival (non-VBS) region and
e orbital-RVB region. Inset in the latter depicts results without renormalization of distance ℓ, clearly showing system size
dependent correlation length ξP(L). f Phase diagram of the correlation length ξP obtained from the CP(ℓ) ∝ exp(−ℓ/ξP) fits
to the L = 60 sites system. White (black) points depict parameters presented in panel d (e). Lines represent the same lines
represent guides to the eye as in Fig. 1.

is believed [8, 11, 31] to be described by the frustrated
J1-J2 S = 1 Heisenberg model in 2D. Interestingly, for
the relevant J2/J1 ∼ 0.5 values, the system ground-state
can be described [11, 32] by spontaneously forming S = 1
AKLT-like chains. In essence, with caveats that our min-
imal model does not consider, e.g., the nematic phase
transition present upon doping, our results are ”just”
doping of such a quasi-1D many-body state.

Our findings reveal an astonishing robustness of the
Haldane physics of the S = 1 AFM chain upon hole
doping (topologically nontrivial orbital-RVB state) and
its importance for the pairing correlations even at sig-
nificantly large doping levels (x ≃ 0.35). This is unex-
pected since such a phase is fragile for pure spin models
[33, 34]. Furthermore, our results encapsulate the main
features expected in the superconductor’s phase diagram
at zero temperature: doping the quantum paramagnetic
system leads to a finite region in which pair-pair cor-
relations are present. This is especially appealing for
U ∼ 4W (U ∼ 8t), for which we see the above be-
haviour for 0.1 <∼ x <∼ 0.3. Furthermore, for U ∼ 2W
and 0.2 < x < 0.35, the pair-pair correlation decays
relatively fast, although the binding energy is negative
ϵB < 0. One can associate this with zero spin-gap ∆S and
pre-formed pairs in the vicinity of a trivial-topological
transition (which becomes coherent at larger U , when
∆S ̸= 0, i.e., in the topologically nontrivial region). How-
ever, our finite-size data cannot exclude a small but finite

∆S already in this region.

While the valence-bond pairing mechanism was pro-
posed almost 40 years ago, the main challenge was to
show that the VB-like state is, in fact, the ground state
of realistic microscopic models. We have demonstrated
for the two-orbital Hubbard chain that the orbital-RVB
ground state may be identified via its nontrivial topolog-
ical properties. Utilizing this property, we have shown
that the electron pairing and the orbital-RVB occur in
the same parts of the phase diagram.
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SUPPLEMENTARY INFORMATION for

Evidence for valence-bond pairing in a low-dimensional two-orbital system

DMRG method

All results presented in this work were obtained with
the help of the zero-temperature density matrix renor-
malization group (DMRG) method12 within the single-
site algorithm3. We have kept up to M = 2024 states,
performed at least 15 sweeps, and used A = 0.001 vector-
offset in the single-site DMRG approach, allowing us to
accurately simulate system sizes up to L <∼ 90 sites of
the two-orbital Hubbard model. Consequently, the error
bars on the numerical results are smaller than the data
points.

Static spin correlations

Figure S1 depicts additional results in the interaction
U - doping x plane, i.e., (a) the edge-edge spin correla-
tions and (b) the analysis of the static structure factor.

(a) Fig. S1a. The behaviour of spin edge-edge corre-
lations |⟨Sz

1S
z
L⟩/⟨Sz

1S
z
1 ⟩| (with Sz

ℓ = Sz
0ℓ + Sz

1ℓ) is consis-
tent with the results presented in Fig. 1b of the main
text. For the (U, x) values for which the orbital-RVB
state is found, the spin-spin correlations across the sys-
tem (between the edges) are finite. The latter indicated
the presence of the Haldane edge state, inherited from
the x = 0 and U, JH ≫ t limit of the S = 1 Heisenberg
model.

Special attention is needed in the small but nonzero
doping region, x → 0, and large interaction strength,
U/W > 3. We find phase separation between hole-
undoped antiferromagnetic and hole-rich ferromagnetic
regions. Such phase is expected in the systems with
strong AFM correlations456, and also in the systems with
strong Hund exchange JH

7.
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Supplemental Figure S1. Spin correlations. Interaction
U -doping x phase diagram of a edge-edge spin correlations
|⟨Sz

1S
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z
1 ⟩|, and b position of the maximum qmax of the

static structure factor S(q).

(b) Fig. S1b. The nature of the magnetic correlations
can be examined with the help of the static structure
factor S(q), i.e., from the Fourier transform of the spin-
spin correlations ⟨Sz

i S
z
j ⟩. Fig. S1b depicts the position of

the maximum qmax of S(q). Our results indicate that for
U/W < 4, the correlations have an overall AFM nature
(qmax ∼ π). For U → 0, this reflects the paramagnetic
state, while for U ∼ W AFM and incommensurate-AFM
correlations for x → 0 and x ̸= 0, respectively. For fi-
nite doping x ̸= 0 and for U/W ≫ 1 (or to be more
specific: for JH ≫ t) the system order ferromagnetically
(qmax = 0) due to the double-exchange mechanism 89.
See also Ref. [23, 24] of the main text. Note that in our
considerations the Hund exchange is given by JH = U/4,
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Supplemental Figure S2. Charge density oscillations. a Interaction U and b doping x dependence (for fixed x = 0.2
and U/W = 1.8, respectivly) of the spatial profiles of the electron density nℓ. Consecutive curves presented in panel a have
−0.2 offset for clarity. c Cosine fits nℓ = A cos(4kFℓ) with kF = 0.5πn = 0.5π(1 − x) to the selected data (U/W = 1.8 , x =
0.05, 0.10, 0.15, 0.20). d Charge density wave amplitude U -x phase diagram. e Fits to the charge density wave (CDW 2kF
oscillations, +0.05 offset for clarity) and pair density wave (PDW 4kF oscillations, −0.05 offset for clarity).

as widely used in many materials such as high-Tc Fe-
based superconductors101112.

Charge density oscillations

In Fig. S2, we present the analysis of the spatial de-
pendence of the electron density nℓ = n0ℓ + n1ℓ at finite
doping x ̸= 0. Panels a and b depict interaction U and
doping x dependence, respectively, while panel c shows
exemplary fits to the nℓ = A cos(4kFℓ) function.

Interestingly, we find two types of charge density os-
cillations. At U → 0 (in the topologically trivial re-
gion), we find ”standard” charge density wave (CDW)
2kF = πn = π(1 − x) Friedel oscillations (see fit for

10 K. Haule and G. Kotliar, ”Coherence–incoherence crossover in
the normal state of iron oxypnictides and importance of Hund’s
rule coupling,” New J. Phys. 11, 025021 (2009).
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U/W = 0.5 presented in Fig. S2e). On the other hand,
in the region where orbital-RVB is stabilized, we find 4kF
oscillations (see fits presented in Fig. S2c and Fig. S2e).
The latter phenomenon is consistent with pair-density
wave (PDW) with two holes in each minimum in the
density (see Ref. [25–27] of the main text).
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