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We present a comprehensive analysis of the magnetic excitations and electronic properties of fully
quantum double-exchange ferromagnets, i.e., systems where ferromagnetic ordering emerges from
the competition between spin, charge, and orbital degrees of freedom, but without the canonical
approximation of using classical localized spins. Specifically, we investigate spin excitations within
the Kondo lattice-like model, as well as a two-orbital Hubbard Hamiltonian in proximity to the
orbital-selective Mott phase. Computational analysis of the magnon dispersion, damping, and spec-
tral weight within these models reveals unexpected phenomena, such as magnon mode softening
and the anomalous decoherence of magnetic excitations as observed in earlier experimental efforts,
but explained here without the use of the phononic degrees of freedom. We show that these ef-
fects are intrinsically linked to incoherent spectral features near the Fermi level, which arise due to
the quantum nature of the local (on-site) triplets. This incoherent spectrum leads to a Stoner-like
continuum on which spin excitations scatter, governing magnon lifetime and strongly influencing
the dynamical spin structure factor. Our study explores the transition from coherent to incoherent
magnon spectra by varying the electron density. Furthermore, we demonstrate that the magnitude
of the localized spin mitigates decoherence by suppressing the incoherent spectral contributions
near the Fermi level. We also discuss the effective J1-J2 spin Hamiltonian, which can accurately
describe the large doping region characterized by the magnon-mode softening. Finally, we show
that this behavior is also present in multiorbital models with partially filled orbitals, namely, in
systems without localized spin moments, provided that the model is in a strong coupling regime.
Our results potentially have far-reaching implications for understanding ferromagnetic ordering in
various multi-band systems. These findings establish a previously unknown direct connection be-
tween the electronic correlations of those materials and spin excitations. Our results indicate that
some experimental features believed to emerge from the coexistence of multiple types of degrees of
freedom may originate mostly from electronic correlations. The latter, however, need to be studied
using the fully quantum mechanical model.

I. INTRODUCTION

The ferromagnetism of transition metal materials re-
mains a challenge despite nearly a century of investiga-
tion. Typically, one of three approaches is used to de-
scribe the magnetic properties of a given compound. (i)
In systems with localized charge carriers, the localized
magnetic moments form a lattice (i.e., Heisenberg spin
model) and interact via an exchange mechanism [1]. (ii)
In contrast, delocalized Bloch plane waves mediate ex-
change interactions between spins in itinerant electron
systems [2]. In such a situation, the scattering between
electrons and holes gives rise to the so-called Stoner con-
tinuum [3], which influences the stability of the magnetic
excitations. (iii) In the third scenario, both localized
spins and itinerant electrons coexist. Depending on the
hybridization between the latter and the strength of the
interaction, the behavior of such systems is encapsulated
in the Hubbard-Kanamori model [4, 5], the periodic An-
derson model [6], or (derived in the limit of strong inter-
actions [7]) in the Kondo-lattice model.

The third scenario is usually the right approach in
strongly correlated systems with more than one valence
band contributing to the Fermi level (i.e., in multior-
bital systems). The textbook [8–10] example of this phe-
nomenon is present in transition metals with partially
filled d electron orbitals, with perovskite manganese ox-
ides (manganites; R1−xAxMnO3 where R=La,Ho,Nd,Pr
and A=Sr,Ca,Pb) as a prime example. Here, three of four
3d electrons of Mn3+ ions occupy t2g orbitals, and the re-
maining itinerant electron occupies one of the eg orbitals
[11]. The former are localized and form (due to the Hund
rules) an effective magnetic moment of S = 3/2 - often
approximated by the semiclassical S → ∞ limit because
of its large value. Since manganites show a huge decrease
in resistance by applying a magnetic field (the so-called
colossal magnetoresistance) [11, 12], considerable effort
was devoted to describing the nontrivial physics of inter-
play between mobile electrons and localized spins. Con-
sequently, the Kondo-lattice was extensively investigated
in the past [11, 13–18].

The magnetic properties of manganites and related
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compounds are strongly influenced by the double-
exchange mechanism [19–21]. In the generic scenario,
two ions with different oxidation (e.g, Mn3+ and Mn4+

bridged by O2−) can easily exchange eg the electron if its
spin projection is ferromagnetically (FM) aligned with
the remaining t2g ones. This constraint is a consequence
of the ferromagnetic Hund exchange JH present in the
system. Due to this mechanism, double-exchange fer-
romagnetic ordering naturally occurs in multiorbital sys-
tems at electronic densities away from half-filling (n ̸= 1).
Consider itinerant electrons interacting with localized
magnetic moments. The interorbital Hund exchange JH
favors parallel alignment of their spins, forming maxi-
mized local spins. Let us discuss here a localized S = 1/2
spin and only one itinerant orbital for simplicity. At half-
filling n = 1, states with maximum local spin (forming
triplets in this case) are favored over doubly occupied or
empty sites. Such system orders antiferromagnetically
(AFM) via a superexchange mechanism with coupling
∝ 1/JH, similar to the mechanism known from the single-
orbital Hubbard model at large Hubbard interaction U .
However, unlike one-band models, ferromagnetic order-
ing is preferred in multiorbital systems with large inter-
actions (JH ≫ 1) and n ̸= 1. The latter emerges from the
kinetic energy of the electrons. To minimize the energy,
electrons that hop between neighboring sites must have
the same spin projection as the localized spins. Conse-
quently, the Hund interaction strongly couples electronic
transport with the system’s magnetism. This work will
consider two models where this scenario occurs: the two-
orbital Hubbard model and the generalized Kondo model
(both described in the next section).

Although the ferromagnetic order is considered ”triv-
ial”, with, e.g., simple Holstein–Primakoff magnons of
[1− cos(q)] dispersion, the excitations above double-
exchange ferromagnets proved challenging. In the se-
ries of inelastic neutron scattering (INS) experiments
on manganites [22–29] unusual features, characteristic
across the R1−xAxMnO3 family, were found. For all den-
sities n the expected long-wavelength q → 0 quadratic
Goldstone mode, ω(q) ∝ q2, was observed. However,
for shorter wavelengths, a sharp dispersion gave way to
strong magnon decoherence and strongly n-dependent
magnon mode softening. In the naive classical spin-
wave consideration [28, 29], the latter required nearest-
neighbor and not well-justified fourth-neighbor coupling
(with vanishing second- and third-nearest-neighbor cou-
pling) to reproduce the experimental dispersion. Vari-
ous origins and approaches have been proposed to ex-
plain this behavior, e.g., phase separation and the pres-
ence of magnetic polarons [11, 30–32], breakdown of the
canonical double-exchange limit [33], non-Stoner con-
tinuum [34], spin-wave and 1/S-expansion [35–39], and
strong spin–lattice/orbital coupling [15, 30, 40–44]. Im-
portantly, the latter is consistent with the experimental
finding [22, 25, 28, 45] of the importance of Jahn–Teller
phonons. However, as we show below, in the full quantum
model (i.e., with S = 1/2 localized moments), the un-

usual features of excitations above double-exchange fer-
romagnets are reproduced with the ”simple” Kondo-like
model without Jahn–Teller distortion.
In the context of multiorbital systems, ferromagnetic

ordering also appears in other materials. Recently, much
interest has been dedicated to the orbital-selective Mott
phase in iron pnictides or ruthenates in which the fer-
romagnetically ordered phase can appear [46–49], and
to the coexistence of ferromagnetism and superconduc-
tivity in heavy-fermion materials [50–52]. An example
of the latter is the exciting discovery [53] of spin-triplet
superconductivity in the U(Te,Ge)2 family of materials.
Finally, it is worth noting that non-equilibrium setups
(i.e., pump-probe spectroscopy) can also induce a state
with coexistent ferromagnetic and superconducting or-
der in multiorbital Hubbard-Kanamori models [54, 55].
In this context, we will show that even in systems with-
out localized spin moments, the overall behavior is akin
to the one described in the Kondo-lattice considerations.
To end this section let us list the main achievements

of our work:

(i) We present the magnon dispersion relation for a
fully quantum double-exchange ferromagnet.

(ii) We demonstrate that the characteristic features of
spin excitations identified experimentally in man-
ganites — specifically, magnon mode softening and
anomalous magnon damping — are present in the
full many-body calculations of the Kondo-lattice
model without phononic degrees of freedom.

(iii) We show that the single-particle spectral function
of double-exchange ferromagnets includes incoher-
ent spectral weight near the Fermi level. Such ex-
citations control the magnon damping via scatter-
ing with a Stoner-like continuum. Since the latter
emerges from the local multiplets present in the
fully quantum system, they are not possible when
only classical localized spins are considered and are
discussed here for the first time.

(iv) We investigate how the magnon dispersion depends
on the localized spin S length, rendering our results
relevant to many itinerant ferromagnets.

(v) We show that in the large doping region, n ≳ 1.6,
the spin excitations can be effectively described
by the J1-J2 spin model. Our results confirm
the phenomenological (experimental) observation
that magnon mode softening has to be described
with the help of second-nearest-neighbor interac-
tion along the primary lattice directions in the ef-
fective spin model consideration.

(vi) We show that all of the above phenomena are also
present in the full two-orbital model, i.e., in the
parameter region where localized spins are absent.

The paper is structured as follows. In Sec. II, we
set the stage for the discussion about excitations above
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the double-exchange ferromagnet. First, we examine the
two-orbital Hubbard Hamiltonian and briefly describe
how the orbital-selective Mott phase emerges in this
model. Next, we present the effective description, namely
the generalized Kondo model, for which most quantities
will be evaluated. We conclude this section by discussing
the methods and parameters used in this work. Sec. III
contains the analysis of the single-particle spectral func-
tion and the density of states. Finally, in Sec. IV, we
present the main results: the spin excitations analysis of
the quantum double-exchange ferromagnet. This section
also describes the Stoner-like continuum, which is neces-
sary for understanding spin excitations, and also the ef-
fective long-range spin Hamiltonian. Sec. V is devoted to
spin excitations in the two-orbital Hubbard model. The
discussion and conclusions are given in Sec. VI. In the
Appendix, we present additional results for the charge
structure factor (App. A) and the dependence on the
system parameters (App. B and App. C).

II. MODELS AND METHODS

Two-orbital Hubbard-Kanamori model &
orbital-selective Mott phase

To be practical, we will carry out our study in one
dimension (1D) because the results are quasi-exact by
using powerful computational techniques. However, we
argue that our conclusions are generic and simple and
apply to higher dimensions as well. The two-orbital 1D
Hubbard-Kanamori model (HK) is given by

H2O =
∑
γγ′ℓσ

tγγ′

(
c†γℓσcγ′ℓ+1σ +H.c.

)
+∆CF

∑
ℓ

n1ℓ

+ U
∑
γℓ

nγℓ↑nγℓ↓ + U ′
∑
ℓ

n0ℓn1ℓ

− 2JH
∑
ℓ

S0ℓ · S1ℓ + JH
∑
ℓ

(
P †
0ℓP1ℓ +H.c.

)
.(1)

Here c†γℓσ (cγℓσ) represent electron creation (annihila-

tion) operator at orbital γ = {0, 1} and site ℓ =
{1, . . . , L}, nγℓσ represents density operator (with nγℓ =

nγℓ↑ + nγℓ↓), Sγℓ is the local spin, and P †
γℓ = c†γ↑ℓc

†
γ↓ℓ.

The first two terms in the above equation represent the
system’s kinetic energy, with t as hopping and ∆CF as the
crystal field, respectively. The rest of the Hamiltonian ac-
counts for potential energy: the third and fourth terms
describe the on-site electron repulsion, with intra-orbital
U and inter-orbital U ′ interactions. The last two terms
originate from the multiorbital physics: JH accounts for
the ferromagnetic Hund coupling between spins Sγℓ in
different orbitals, maximizing the total on-site spin. The
model preserves SU(2) symmetry when U ′ = U − 5/2JH
[47].

The phase diagram of (1), i.e., as a function of the in-
teraction U strongly depends on the value of the Hund

exchange JH. At JH → 0, one can observe the “stan-
dard” metal to Mott insulator transition, familiar from
the single-orbital Hubbard model. For JH ̸= 0, especially
when JH ∼ U , a new phase can emerge [47, 56]. In the
case of orbital differentiation (e.g., t00 > t11, or/and due
to the presence of a crystal field ∆CF ̸= 0), one of the
orbitals can undergo a Mott phase transition, while the
other remains itinerant (metallic). This phenomenon is
termed the orbital-selective Mott phase (OSMP). Con-
sequently, within the OSMP, itinerant electrons interact
with localized ones. Although the exact conditions under
which the OSMP is stabilized are still under study [57–
59], this phase appears to be relevant for various iron
pnictides and/or ruthenates [47–49], including systems
with reduced dimensionality [60–63].
The OSMP, i.e., the unique ”mixture” of metallic and

insulating bands, leads to a rich magnetic phase dia-
gram: (i) At small interaction values, the paramagnetic
state dominates. (ii) At U ∼ JH ∼ W , where W is
the kinetic energy bandwidth, the system is in a block-
magnetic state [60–62, 64–66], i.e., AFM coupled FM
islands (blocks) of various n-dependent sizes. (iii) For
JH ≫ t and n ̸= 1 eventually the expected fully ferro-
magnetic ordering is present. This is exactly the region of
interest of this work. (iv) Finally, between FM and block
phases, an incommensurate block-spiral ordering can be
stabilized [67] due to the competition between FM (due
to double exchange) and AFM (due to superexchange)
tendencies.

Generalized Kondo model

It has been shown [65–67] that the static and dynamic
quantities within the OMSP can be very accurately de-
scribed by the generalized Kondo (gK) model, given by:

HgK = t
∑
ℓσ

(
c†ℓσcℓ+1σ +H.c.

)
+ U

∑
ℓ

nℓ↑nℓ↓

− 2JH
∑
ℓ

sℓ · Sℓ , (2)

with t = t00, provided that t00 represent the hopping of
wide band (t00 ≫ t11). Similarly, sℓ = S0ℓ and Sℓ = S1ℓ

represent the spin of an electron at the wide and narrow
bands, respectively. Note that for half-filling n = 1 and in
the U , JH ≫ t limit, the total magnetic moment squared

T 2 = T (T + 1) , T = s+ S = 1/2 + S , (3)

is maximized, e.g., T = 1 for S = 1/2 localized spins.
The total magnetization T z

tot = sztot + Sz
tot is conserved,

[H,T z
tot] = 0 while the band magnetizations are not,

[H, sztot] ̸= 0 ̸= [H,Sz
tot].

As described in the introduction, semiclassical versions
of Kondo lattice models (with U = 0 and S → ∞) have
been extensively studied in the past. This approach is
justified for manganese oxides, where the JH|S| ≫ 1 limit
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of (2) is believed to provide at least qualitatively the cor-
rect result. On the other hand, for compounds where
the OSMP is relevant, only one orbital is Mott localized
with S = 1/2. In this case, one must consider the full
quantum version of gK since JH|S| ∼ U ∼ W . In this
work, we will predominantly focus on the S = 1/2 case;
however, we will also comment on the dependence of our
findings on S, including discussions for the cases of S = 1
and S = 3/2 localized spins coupled to s = 1/2 itiner-
ant fermions. The latter can be viewed as a particular
case of the three- and four-orbital Hubbard model (1),
respectively, with only one itinerant band.

Methods

We will primarily focus on two experimentally relevant
quantities: the single-particle spectral function A(q, ω)
(discussed in Sec. III) and the dynamical spin struc-
ture factor S(q, ω) (discussed in Sec. IV). The former is
directly relevant for angle-resolved photoemission spec-
troscopy (ARPES) [68, 69], while the latter pertains to
INS [70]. Our results are also relevant for resonant in-
elastic X-ray scattering (RIXS) [71]. Below, we discuss
the excitations above the ground state, i.e., we will con-
sider the zero temperature limit. Both of these dynamical
(frequency-dependent) quantities can be expressed as the
imaginary part of Green’s functions of the form

⟨⟨Aℓ Bm⟩⟩∓ω = − 1

π
Im⟨gs|Aℓ

1

ω+ ∓ (H − ϵGS)
Bm|gs⟩ ,

(4)
where ω+ = ω + iη with η as an internal broadening
(caused by secondary effects such as disorder or resolu-
tion), |gs⟩ represents the ground state vector with energy
ϵGS, and Al , Bm are appropriate operators.

The ground states of the Hamiltonians and the Green’s
functions analyzed in this work were obtained us-
ing the density matrix renormalization group (DMRG)
method [72, 73] within the single-site approach [74].
Dynamical correlation functions were computed via the
dynamical-DMRG [75, 76], using the correction-vector
method and Krylov decomposition to calculate spec-
tral functions in frequency space [76] directly. During
the DMRG simulations, up to M = 1536 states were
retained, enabling us to simulate systems as large as
L = 200 for the gK model (2) and L = 60 for the two-
orbital Hubbard model (1), with truncation errors below
10−7.

If not otherwise stated, in the main part of our work
(i.e., in Sec. III and Sec. IV), we will use the gK model (2)
in the large Hund limit, i.e., with t = 0.5 [eV], U/t =
20, JH/t = 20, L = 200 sites, and S = 1/2 localized
spins. Although U = JH would be considered reasonable
to describe manganites phenomenologically, in the last
part of the publication, we relax these numbers towards
more realistic values. In Sec. IVA, we will consider S = 1
and S = 3/2, while additional results for various system

parameters (U/t = 0, 10 and JH/t = 10, 40) are given
in App. B. Finally, the results for the full two-orbital
Hubbard model (1) will be presented in Sec. V.

III. ELECTRONIC EXCITATIONS

Let us first focus on the single-particle spectral func-
tion, which is defined as

A(q, ω) =
1

L

∑
ℓ

ei(ℓ−L/2)q
(
⟨⟨cℓc

†
L/2⟩⟩

−
ω + ⟨⟨c†ℓcL/2⟩⟩

+
ω

)
,(5)

with cℓ =
∑

σ cℓσ and ⟨⟨c†ℓcL/2⟩⟩
+
ω (⟨⟨cℓc

†
L/2⟩⟩

−
ω ) repre-

senting the hole (electron) dynamics below (above) the
Fermi level ϵF. We will also consider the spin-resolved
spectral functions Aσ(q, ω), where σ =↑, ↓ denotes the
spin of the creation/annihilation operators [i.e., cℓσ in-
stead of cℓ in Eq. (5)]. Note that A(q, ω) = A↑(q, ω) +
A↓(q, ω) due to the spin conservation of HgK (2). In the
remainder of this Section (if not otherwise stated), we
will consider HgK − µN , with the chemical potential µ
set to the Fermi level (µ = ϵF). With this definition, the
ω > 0 (ω < 0) results represent the electron (hole) part
of the spectral function.
In Fig. 1, we present the electron density n > 1 depen-

dence of the single-particle spectral function A(q, ω) in
proximity to the Fermi level for the gK model (2). Due
to the particle-hole symmetry of the latter, our results
are equivalent to 2− n filling. The parameters used here
are: S = 1/2 localized spins, U/t = JH/t = 20, and zero
magnetization sector T z

tot = 0. It is important to note
that additional bands of excitations are present deep be-
low the Fermi level. We will briefly comment on them
later and refer the interested reader to Ref. [77] for a
detailed discussion.
The results presented in Fig. 1 show that the coherent

spectrum in proximity to the Fermi level resembles that
of noninteracting spinless fermions and can be modeled
with

ωff(q) = 2t cos(q)− µff , (6)

where µff = 2t cos
(
kffF

)
and kffF = π(2 − n), i.e., by

the system of noninteracting spinless fermions with ef-
fective density nff = 2 − n. Note, however, the differ-
ent Fermi level dependence on the density n, given by
2kF = πn, for the noninteracting spinfull electrons [i.e.,
for the U → 0 , JH → 0 limit of the gK model (2) consid-
ered here]. Such findings are consistent with the semi-
classical result in the S → ∞ limit [78].
The above behavior can be easily understood in the

ferromagnetically polarized system (i.e., for n ̸= 1 and
JH ≫ t). Consider the density n = 1.5, whose spectral
function resembles the half-filled free fermion case; see
Fig. 1(c). To minimize the kinetic energy, the ground
state is built from an equal proportion of singlons/triplets
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Figure 1. Single-particle spectral function A(q, ω) of the generalized Kondo (gK) model with S = 1/2 localized spins
in the limit of JH ≫ t (U/t = JH/t = 20 and T z

tot = 0 magnetization sector) for various electron doping levels,
n = 1.33 , 1.40 , 1.50 , 1.60 , 1.66 , 1.80 [panels (a) to (f), respectively]. Note the visible spectral weight below the Fermi level
ω = 0 (the latter is depicted as a white dashed line). In all panels: L = 200 sites, frequency resolution δω/t = 4 · 10−2, and
η = 2δω.

and doublons (eigenstates of the atomic limit, t → 0),

|gs⟩atomic =
1√
2

∣∣∣∣↑2
〉
− 1√

2

∣∣∣∣↑↑
〉

,

arranged in a staggered fashion to maximize the mobility
of the electrons. We can pictorially represent such states
as empty and occupied sites of a spinless fermions-like
system, i.e., ∣∣∣∣↑ ↑ ↑ ↑

2 ↑ 2 ↑

〉
≃ |1010⟩ .

Here, the state on the left depicts a sketch of the ground
state of a Kondo-like model with all localized spins polar-
ized (up row) and n = 1.5 electrons in the itinerant band
(bottom row). Note that the true many-body ground
state is a quantum liquid built predominantly from the
configurations of the above type. Even in the case of the
polarized state, T z

tot = SL+ sL(2− n), the electrons in
the itinerant orbital don’t form any apparent CDW (pro-
vided that the system is not in the phase-separated state,
which don’t discuss in this work).

With this naive mapping to spinless fermions, the
2t cos(q) dispersion for ω > 0 indicates that the nonin-
teracting considerations could describe the single-particle

excitations near the Fermi level. However, this simple
picture fails to capture important (from the perspective
of magnetic excitations) details of the ω < 0 spectrum.
This becomes evident from the analysis of the density-
of-states (DOS) given by DOS(ω) =

∑
q A(q, ω). In

Fig. 2(a), we present the complete DOS over the wide
range of frequencies, while in Fig. 2(b), we provide de-
tailed results in the proximity of the Fermi level. In or-
der to visualize non-overlapping bands in the spectrum,
in Fig. 2(a), we use U = 0 and JH/t = 20. In addi-
tion to the spectral weight close to the Fermi level, two
additional bands can be found: (i) at ω ∼ −2JH the lo-
cal (on-site) triplet to local singlet excitations, known as
Hund band excitations, which breaks the Hund’s rules
[77, 79, 80]; and (ii) at ω ∼ −(U + JH), the ”standard”
singlon-doublon excitation known from the single-orbital
Hubbard model (shifted additionally by JH).

Let us focus on the spectral weight near the Fermi
energy. In Fig. 2(b), we present the DOS correspond-
ing to the data in Fig. 1 (i.e., U/t = JH/t = 20). For
all considered electron densities n, the DOS(ω > 0)
is perfectly reproduced by the noninteracting solution
DOSff(ω) = 1/2π sin[arccos(ω/2)] [indicated as the black
dashed line in Fig. 2(b)]. On the other hand, for ω < 0,
we find additional spectral weight. This can be quanti-
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Figure 2. (a) Density-of-states DOS(ω) of the gK model with
S = 1/2 localized spins in the JH ≫ t limit. Three sepa-
rate bands are clearly visible (at ω ∼ ϵF, ω ∼ −2JH, and
ω ∼ −U − JH). Evaluated for L = 200, U = 0, JH/t = 20,
and T z

tot = 0 magnetization sector. (b) DOS(ω) close to the
Fermi level (obtained from the q-integrating data presented
in Fig. 1, i.e., evaluated for L = 200, U/t = JH/t = 20, and
T z
tot = 0). Solid colors depict spectral weight below the Fermi

level (hole part ∝ ⟨⟨c†ℓcL/2⟩⟩
+
ω ). Lines depict results above the

Fermi level (electron part ∝ ⟨⟨cℓc
†
L/2⟩⟩

−
ω ). The free-fermion

solution is shown as a dashed line. As evident from the pre-
sented results, below the Fermi level µ = ϵF, one can observe
additional spectral weight (w.r.t. the free fermions solution).
(c) Integrated spectral weight NF of the data in panel (b).
The colored dashed lines represent guides to the eye. The
inset depicts the frequency range of a given spectral weight.
See the text for details.

fied by integrating the spectral weight of the band in the

neighborhood to the Fermi level: NF =
∫
dωDOS(ω) [see

Fig. 2(c)]. Consider again the case of n = 1.5. Taking
the ω > 0 weight [green line in Fig. 2(c)] as a reference
point — i.e., the part of the spectrum perfectly described
by the free fermion solution at half-filling [see Fig. 1(c)]
— we would expect the same weight for ω < 0 (yellow
line). Surprisingly, our results indicate a 1.5 times larger
contribution for all considered n (blue and red lines).
To gain further insight into the spectrum below the

Fermi level, let us focus on the fully up-polarized sys-
tem, i.e., T z

tot = SL+ sL(2− n) for n > 1. Note that in
the SU(2) symmetric system, the ferromagnetic ground
state is not unique; all magnetization sectors are degen-
erate, and we expect the same behavior in all of them.
Let’s examine how the creation and annihilation opera-
tors act on the ground state. Consider operators with
spin antiparallel to the polarization (σ =↓). The cre-

ation operator c†ℓ↓ can act on any of the local triplets,
promoting it to double-occupied sites, e.g.,

c†ℓ=2↓

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 ↑ 2 ↑ 2 ↑

〉
=

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 2 2 ↑ 2 ↑

〉
≃ |111010⟩ ,

here using ℓ = 2 as an example (we sketch only one of
the possible spin-projections of the many-body state).
Conversely, a down annihilation operator can promote
any of the doublons to local triplets

cℓ=3↓

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 ↑ 2 ↑ 2 ↑

〉
=

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 ↑ ↑ ↑ 2 ↑

〉
≃ |100010⟩ .

The free fermion-like considerations perfectly capture
such processes. This is also reflected in the spin-resolved
spectral function in the direction opposite to the mag-
netization, as shown in Fig. 3(a), and the spin-resolved
DOS in Fig. 3(d). The A↓(q, ω) along with its DOS(ω)
are accurately represented by the noninteracting solution
across the entire range of frequencies (near ϵF).

The action of the cℓσ/c
†
ℓσ operators with spin parallel

to the polarization (σ =↑) is different. First, no addi-
tional σ =↑ electron can be created since the system is
fully polarized. On the other hand, there are two possi-
bilities for annihilating such electrons. Firstly, one can
remove one electron from singly occupied sites, e.g.,

cℓ=2↑

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 ↑ 2 ↑ 2 ↑

〉
=

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 0 2 ↑ 2 ↑

〉
.

Such a state contributes to high energy excitations with
ω ∼ −(U + JH). Secondly, the annihilation of an up
electron from one of the doublons leads to the creation
of a local antiparallel spin configuration

cℓ=3↑

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 ↑ 2 ↑ 2 ↑

〉
=

∣∣∣∣↑ ↑ ↑ ↑ ↑ ↑
2 ↑ ↓ ↑ 2 ↑

〉
.

Both configurations obtained from the cℓ↑ action go be-
yond the simple free-fermion-like considerations, as such
states cannot be mapped using the |0⟩ and |1⟩ states alone
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Figure 3. Single-particle spectral function A(q, ω) of the ↑-polarized gK model with S = 1/2 localized spins, calculated for
n = 1.5, U/t = JH/t = 20, and the T z

tot = SL + sL(2 − n) magnetization sector. (a,b) Spin-resolved Aσ(q, ω) with (a) a spin
projection antiparallel σ =↓ (coherent band) and (b) parallel σ =↑ (incoherent band) to the polarization of the system. Note
the change in color scale. Panel (c) depicts the spectral function for the T z

tot = 0 case. (d) The density-of-states DOS(ω) of
the data presented in panels (a-c). It is evident that the DOS of the antiparallel case [panel (a)] is perfectly described by the
free fermion solution (indicated by the black dashed line). (e) Sketch of the coherent and incoherent excitations. In all panels:
L = 200, δω/t = 4 · 10−2 and η = 2δω.

(representing double-occupied sites and local triplets, re-
spectively, in our convention). Furthermore, the local
antiparallel spin configuration is not an eigenstate of the
model in the atomic limit. However, it has a finite pro-
jection onto eigenstates with local T z

ℓ = 0, i.e., onto the
singlet and one of the triplets. The former contributes to
the high-frequency states, with ω ∝ −2JH because they
violate Hund’s rules. In contrast, the local triplet states
form the ground state in the atomic limit (t → 0). In the
many-body system (t ̸= 0), the action of the up annihi-
lation operator on the up-polarized state creates an in-
coherent band of excitations below the Fermi level. This
behavior is illustrated in Fig. 3(b).

The remarkable picture emerging from our investiga-
tion indicates that a free-fermion-like solution only qual-
itatively describes the single-particle spectral function
A(q, ω) of the Kondo-like model with S = 1/2 localized
spins. In the polarized system [T z

tot = SL+sL(2−n)], the
dispersion of the removed electron (the hole part of the
spectrum) depends on its spin. The electrons created or
annihilated with opposite spin to the polarization form a
coherent band perfectly described by a noninteracting so-
lution. On the other hand, electrons annihilated with the

same spin as the polarization form an incoherent band of
excitations due to the projection to local triplet states
that can build the ground state in the atomic limit. As a
consequence, we speculate that a similar incoherent band
in A(q, ω) should be found in any lattice dimension since
the above is a consequence of the quantum nature of the
triplet (absent in the S → ∞ limit due to lack of T z

ℓ = 0
triplet projection).

Note also that the total spectral function A(q, ω) is
identical to the case of zero magnetization (T z

tot = 0) [see
Fig. 3(c)]. However, in this case, both spin projections
contribute to both bands due to the complicated nature
of the many-body state at T z

tot = 0. Nevertheless, an
inspection of the single-particle spectral function A(q, ω)
for zero magnetization, presented in Fig. 1, indicates that
an incoherent band of excitations is indeed present for all
considered electron densities n and spans from ω ≃ 0 to
ω ≃ ωff(π), i.e., from the Fermi level to the bottom of
the noninteracting band. The analysis of the density-
of-states [see Fig. 2 and Fig. 3(d)] indicates that 1/3 of
spectral weight close to the Fermi level is in the incoher-
ent band, with the remaining 2/3 in the free-fermion-like
dispersion ∼ cos(q), irrespective of the magnetization of
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Figure 4. Dynamical spin structure factor S(q, ω) of the gK model with S = 1/2 localized spins in the JH ≫ t limit (U/t =
JH/t = 20, T z

tot = 0 magnetization sector) for various electron doping levels, n = 1.33 , 1.40 , 1.50 , 1.60 , 1.66 , 1.80 [panels (a) to
(f), respectively]. Note the magnon damping (incoherent spectrum) for n ≲ 1.5 and the magnon mode softening for n ≳ 1.5.
The red dashed line represents the ωm(q) = Jq→0[1− cos(q)] coherent magnon dispersion with Jq→0 obtained from the q < π/4
fit. The black dashed line represent fit to the ωfit(q) (see Sec. IVB). The white dashed line in all panels represents the bottom
of the Stoner continuum obtained from the incoherent band (see text for details). In all panels: L = 200, δω/t = 6 · 10−3 and
η = 2δω.

the system. Consequently, the additional weight in the
A(q, ω) [or DOS(ω)] should be visible in photoemission
ARPES experiments, a novel prediction of our effort. Im-
portantly, as shown in the next section, the incoherent
band is necessary to understand the behavior of spin ex-
citations.

IV. SPIN EXCITATIONS

In this section, we will discuss the dispersion of spin
excitations as measured by the dynamical spin structure
factor

S(q, ω) =
1

L

∑
ℓ

ei(ℓ−L/2)q ⟨⟨TℓTL/2⟩⟩−ω . (7)

Here Tℓ = sℓ + Sℓ is the total spin at site ℓ. One
of the main results of this work is presented in Fig. 4,
which shows the electron density n dependence of S(q, ω).
Several conclusions can be drawn directly from the pre-
sented results. The quadratic behavior of long wave-
length magnons can be clearly recognized for all consid-
ered cases, i.e., ω(q → 0) ∝ q2. Fig. 5(a) depicts fits of

the dispersion to ωm(q) = Jq→0q
2 in the 0 < q < π/4

region. Our results indicate that the long-wavelength
effective spin exchange Jq→0 increases till n ≃ 1.6 and
decreases afterward.
However, none of the considered cases can be

fully described by the coherent magnon dispersion
ωm(q) = Jq→0[1− cos(q)]. The behavior at shorter wave-
lengths (q/π ≳ 0.4) strongly depends on the doping. For
n > 1.5, we observe a gradual softening of the magnetic
excitations with increasing electron density, along with
a momentum-independent mode across a wide range of
wavelengths π/2 < q < π for the largest considered den-
sity n = 1.8. The behavior for n ≲ 1.5 is strikingly
different. Here, we note a highly incoherent dispersion
for short wavelengths; namely, the magnons significantly
reduce their lifetime Γ. In Fig. 5(b), we present the
wavevector dependence of the magnon linewidths Γ(q)
obtained from the Lorentzian-like fits of S(q, ω) for a
given q, i.e.,

f(ω) =
Λ

(ω − Ω)2 + Γ2
, (8)

where Λ ,Ω ,Γ are fitting parameters representing a nor-
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Figure 5. (a) Dependence of the long-wavelength effective
spin exchange Jq→0 and the spin excitation bandwidth WS

on the electron density n. (b) Wavevector q dependence of
the magnon linewidth Γ, obtained from Lorentzian fits of the
spin excitation spectrum shown in Fig. 4 (see text for details).
Points represent the result of the fit, Eq. (8), while solid lines
represent guides to the eye.

malization constant, position of the maximum, and
linewidth, respectively. As is evident from the presented
results, for q/π > 0.5, the magnons have a lifetime that
is almost an order of magnitude smaller for n ≲ 1.5 than
for n > 1.5. Surprisingly, for q → π, some results (e.g.,
for n = 1.5) regain coherence (at least partially).

A. Magnon decoherence & Stoner continuum

The anomalous dependence of magnon lifetime on the
electron density n and wavelength q indicates a nontriv-
ial scattering of the magnons. The usual mechanism
for such behavior in itinerant magnets emerges from the
Stoner continuum. In this scenario, the magnetic ex-
citations interact with charge fluctuations, i.e., scatter-
ing between two coherent bands of electrons below and
above the Fermi level. In the generic case, one usu-
ally considers a polarized (or partially polarized) sys-
tem and transitions between majority and minority elec-
trons (which are parallel and antiparallel to the polar-
ization of the system, respectively), modeled by, e.g.,
Eq. (6) ωff(q). However, these transitions correspond to
ω ∝ JH, since majority and minority bands emerge from
the mean-field decoupling of the Hund term in (2), i.e.,
2JH sℓ · Sℓ → 2JH (szℓ · ⟨Sz

ℓ ⟩+ ⟨szℓ ⟩ · Sz
ℓ ), justified only in

S → ∞ limit. Consequently, the Stoner continuum in
such a scenario lies much above the energy spanWS ≲ t/2
of the spin excitations [see Fig. 5(a)]. Even without po-
larization, the charge fluctuations between states of ωff(q)
below and above ϵF yield too high frequencies. In App. A,
we present such a situation which, for the free fermion
system, corresponds to the dynamical charge structure
factor N(q, ω). However, as discussed in Sec. III, the
noninteracting (spinless) solution does not fully capture
the electron dynamics; i.e., additional incoherent states
exist below the Fermi level. The following will discuss
how a Stoner-like picture emerges from this context.
Building the Stoner-like continuum from an incoherent

spectrum, like the one presented in Fig. 3(b), requires
some approximation. Let’s consider a simple dispersion

ωinco(q) = ωff(π)
[
1− cos2(q/2)

]
, (9)

from the bottom of the noninteracting band ωinco(π) =
ωff(π) to the Fermi level ωinco(q = 0) = 0. In the next
paragraph, we will discuss the validity of this approxima-
tion. Here, let us first focus on the generic properties of
the above toy model Eq. (9), also shown in Fig. 6(a1,a2)
for two different densities n. The Stoner-like continuum
can be constructed as

ωS(q) = ωff(k1)− ωinco(k2) , (10)

where q = mod (k1 + k2, 2π), k1 > kF, and k2 < kF,
see Fig. 6(b1,b2). Note that in our consideration [e.g.,
fully polarized T z

tot = SL+ sL(2− n) magnetization sec-
tor] ωff(k1) represents the band of σ =↓ fermions, while
ωinco(k2) the incoherent band of σ =↑ fermions. For
Eq. (9), a simple analytical formula for the q-dependent
minimum of the Stoner band from Eq. (10) is given by

ωBS(q) =
(
2t+ µff

)
sin2

(
[q + kF]/2

)
. (11)

In Fig. 6(c1,c2), the low-frequency behavior of Eq. (11)
is contrasted with the expected dispersion of magnons,
ωm(q) ∝ [1− cos(q)]. The presented results show that
the Stoner continuum does not affect the ω → 0 physics,
i.e., ω(q → 0) ∝ q2. On the other hand, for q ∼ π/2,
the magnon dispersion overlaps with the Stoner contin-
uum, and one expects incoherent spin excitations in this
region, among the primary novel results of this publica-
tion. Interestingly, there are parameter regions where the
q → π magnons can exit the Stoner continuum, regaining
coherence [see Fig. 6(c2)].
The behavior described above, see Fig. 6(c1,c2), is sim-

ilar to the dynamical spin structure factor data presented
in Fig. 4, particularly the nontrivial dependence of the
magnon coherence on the electron density n. Before di-
rectly comparing with S(q, ω), let us first focus on the
validity of Eq. (9). First, because the relevant energy
scale of spin excitations is small, WS ≲ t/2, only the
limit ωinco → 0 is relevant for the spin dynamics. Thus,
almost the same results for S(q, ω) are obtained in the
case when the incoherent excitations are approximated
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Figure 6. Stoner continuum toy model (left column n = 1.33,
right column n = 1.50). Panels (a1,a2) show a noninteract-
ing band of coherent electrons ωff(q), Eq. (6), and an ap-
proximation for the incoherent spectrum ωinco(q), Eq. (9).
Panels (b1,b2) show the Stoner-like continuum ωS(q) relevant
for transitions from coherent to incoherent bands, Eq. (10).
The red line depicts the minimum of the continuum ωBS(q),
Eq. (11). (c1,c2) The low-frequency behavior of the Stoner
continuum (solid color) and an exemplary coherent magnon
dispersion ωm(q) = t/2[1 − cos(q)] (black line). The dashed
line depicts the overlap of coherent magnon and Stoner con-
tinuum, i.e., ωm(q) > ωBS(q).

by the quadratic dispersion relations ωinco ∝ −q2 (not
shown).

Taking into account a particular feature of the incoher-
ent states allows one to improve further the agreement
between the toy model and the numerical results for the
spin structure factor. Namely, our analysis indicates the
presence of a small gap ∆inco in the incoherent part of
the single-particle spectrum. In Fig. 7(a1,a2) we show
JH ≫ t results with U/t = 0 and U/t = 20. For the
former, we observe that the incoherent A(q, ω) spectrum
touches the Fermi level (∆inco = 0), while for the latter
we find ∆inco/t ≃ 0.1. Results presented in the App. B
indicate a linear dependence on the Hubbard interaction
strength, ∆inco ≃ αU , albeit with a very small coefficient
α ≪ 1. The gap can be incorporated into the incoherent
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Figure 7. (a1,a2) Incoherent part of the single-particle spec-
tra calculated for U/t = 0 (left column) and U/t = 20 (right
column). The red line represents the gapless approximation
for the incoherent spectrum, Eq. (9), while the blue line rep-
resents the gapped one, i.e., Eq. (12) with ∆inco/t = 0.1.
(b1,b2) The Stoner continuum obtained from the gapless (left
column) and gapped (right column) ωinco(q). (c1,c2) Compar-
ison of the q-dependent minimum of the Stoner continuum
and the dynamical spin structure factor S(q, ω).

spectrum via the approximation

ωinco(q) = ωff(π)
[
1− (1−∆inco/t) cos

2(q/2)
]
, (12)

yielding also an opening of a gap in the Stoner contin-
uum, with min(ωBS) = 2∆inco; see Fig. 7(b1,b2). A di-
rect comparison of the spin spectrum S(q, ω) and the q-
dependent minimum of the Stoner continuum calculated
using Eq. (9) and Eq. (12) is shown in Fig. 7(c1,c2). A
good qualitative agreement is observed for the gapless
solution for both cases (U/t = 0 and U/t = 20). This
holds particularly true for the U/W = 0 case (Fig. 7, left
column), where the bottom of the Stoner continuum de-
rived from Eq. (9) aligns perfectly with the incoherent
part of the magnon spectrum. When considering finite
interaction U/t = 20, we observe better agreement with
the gapped ωinco(q), achieving even quantitative agree-
ment.
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Figure 8. Incoherent part of the single-particle spectral function A(q, ω), calculated for σ =↑ electrons of the ↑-polarized
system. Panels (a), (b), and (c) depict results for S = 1/2 localized spins and n = 1.33 , 1.50 , 1.80, respectively. Panels (d),
(e), and (f) depict results for n = 1.50 and S = 1/2 , 1 , 3/2 localized spins, respectively. In all panels: U/t = JH/t = 20,
T z
tot = SL+ sL(2− n), L = 200, δω/t = 4 · 10−2 and η = 2δω.

In Fig. 4, we show a comparison of S(q, ω) and the
Stoner continuum based on Eq. (12) with ∆inco/t = 0.1
(white dashed line). We find excellent agreement for all
electron densities n ≤ 1.5: (i) we observe coherent excita-
tions at q → 0. Next, (ii) for ωm(q) > ωBS(q), i.e., in the
region where magnons can interact with the Stoner con-
tinuum, we find that the former loses coherence even by
one order of magnitude. Finally, (iii) for n ∼ 1.5, the dis-
persion partially regains coherence for short-wavelengths,
q → π.

However, the behavior of the spin excitation spec-
trum for n > 1.5 is different. In this region, we find
robust magnon mode softening for q → π and, conse-
quently, a lack of any overlap with the Stoner continuum.
This is consistent with the magnon linewidth Γ result,
which shows constant coherence for all wavevectors q; see
Fig. 5(b). It is important to note that in this region, the
approximation ωinco(q), Eq. (9) or Eq. (12), is no longer
valid. In Fig. 8(a-c), we present the incoherent part
of the single-particle spectrum for n = 1.33 , 1.50, and

n = 1.80 (calculated from σ =↑ electrons ⟨⟨c†ℓ↑cL/2↑⟩⟩
+
ω

of the ↑-polarized system). As already discussed, only
the ωinco(q) < WS < t energy region is relevant for spin
excitations (i.e., the bottom of the Stoner continuum).
In the latter, n ≲ 1.5 results have large spectral weight

and can be approximated with ωinco(q). On the other
hand, for n > 1.5, we observe a continuum of excitations
without any apparent structure close to the Fermi level.
The naively assumed sharp dispersion, ωinco(q), from the
simplistic Stoner analysis, is not observed in this regime
when all degrees of freedom are accurately considered.
Consequently, in order to properly evaluate the magnon
dispersion relation in this regime, one needs to consider
a more fundamental Hamiltonian than in previous inves-
tigations, as the one in our effort.

Spin magnitude dependence

So far, we have considered the gK model (2) with
S = 1/2 localized spins. Such considerations are rele-
vant for, e.g., iron-based materials in the OSMP phase,
where one of the orbitals is Mott localized. Conversely,
manganites are typically described with S = 3/2, aris-
ing from three localized electrons in t2g orbitals. In this
Section, we will investigate the dependence of spin excita-
tions S(q, ω) on the magnitude of the localized spin S. In
Fig. 9, we present the magnon spectrum for various elec-
tron densities, n = 1.33 , 1.50 , 1.80, and S = 1/2 , 1 , 3/2.
Our results indicate that for large densities, n = 1.80,
the magnitude of the localized spin S has little effect on
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Figure 9. Dynamical spin structure factor S(q, ω) calculated for various magnitudes of localized spins S and various electronic
densities n in the limit of JH ≫ t (U/t = JH/t = 20 and T z

tot = 0 magnetization sector). (a1-a3) n = 1.33, (b1-b3) n = 1.50,
and (c1-c3) n = 1.80. The first, second, and third rows represent results for S = 1/2, S = 1, and S = 3/2, respectively. In all
panels: L = 200, δω/t = 6 · 10−3 and η = 2δω.

the overall magnon dispersion ωm(q).

On the other hand, two important effects of the magni-
tude of localized S on spin excitations occur for n ≲ 1.5.
Firstly, the magnon dispersion softens for short wave-
lengths (q → π) for all n, a result similar to the S =
1/2, n = 1.80 finding. Secondly, as S increases, we ob-
serve that the magnons regain coherence for all wavevec-
tor values q. The analysis of the single-particle spectra
A(q, ω), shown in Fig. 8(d-f), indicates that the inco-
herent part does not have a well-defined structure for
ω → 0. Consequently, ωinco(q), Eq. (9), is not a good ap-
proximation since there are no well-defined states from
which the Stoner continuum can be built, again similar
to the S = 1/2 case with n = 1.80. In addition, in panels
(d)-(f) of Fig. 8, we see how the weight of the incoherent

band in A(q, ω) decreases as S increases, indicating that
as S → ∞ (limit of classical spins) this weight disap-
pears [78].

B. Magnon mode softening

The Stoner continuum ωS(q) described in the previous
section does not explain the magnon mode softening for
q → π observed for n > 1.5. In fact, our results indi-
cate very small decoherence in this region; see Fig. 5(b).
This is consistent with the overall analysis presented in
Sec. IVA: (i) our results presented in Fig. 4(d-f) indi-
cated that the Stoner continuum lies above the spin ex-
citations due to the presence of the ∆inco gap. (ii) Even



13

−0.3

−0.2

−0.1

0.0

0.1

1 2 3 4

(b) effective spin exchange

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

(a) fit to S(q, ω)

n = 1.25
n = 1.33
n = 1.40
n = 1.50

n = 1.60
n = 1.66
n = 1.75
n = 1.80

J
e
ff
(ℓ
)/
t

Distance ℓ

n = 1.25
n = 1.33
n = 1.40
n = 1.50
n = 1.60
n = 1.66
n = 1.75
n = 1.80F

re
q
u
en

cy
ω
/
t

Wavevector q/π

Figure 10. (a) Magnon dispersion ωfit(q) given by the fit to
S(q, ω) for various electron densities n (see also black dashed
lines in Fig. 4). The dashed lines for n < 1.4 indicate the re-
gion where the fit is less accurate due to strong magnon deco-
herence. (b) Spin exchange Jeff(ℓ) of the effective Heisenberg
model (13) obtained from Fourier transform of the dispersion
presented in panel (a).

if we consider ∆inco = 0 (i.e., U = 0 case), in ω → 0 limit
there is no well-defined spectral weight of the incoherent
part of A(k, ω), see Fig. 8(c), and ωinco(q) is not a good
approximation, as discussed earlier.

In this Section, we will discuss the spin exchange in-
teraction in the effective Heisenberg-type model

Heff =
∑
i,ℓ

Jeff(ℓ)Si · Si+ℓ , (13)

with which the dynamical spin structure factor S(q, ω)
can be described, especially the magnon mode soften-
ing phenomenon. Note that the spin length S in the
above model is not crucial for ferromagnetically ordered
systems, i.e., the results do not change when rescaled ex-
change Jeff → Jeff/S is considered (as evident from, e.g.,
the general form of Holstein–Primakoff transformation
yielding the standard JS[1 − cos(q)] dispersion). Fur-
thermore, although one does not expect the decoherence
of magnons in Heff , the general shape of the dispersion
ωS(q) can be captured by a proper choice of Jeff(ℓ) -
the approach which is an essence of the spin-wave theory
considerations.

In order to estimate the Jeff(ℓ), we fit the collec-
tion of frequencies for which the S(q, ω) takes maximum
value for given wavevector q. We find the most consis-
tent fit for all electron densities n can be obtained with
ωfit(q) = a tanh(b qc), with a, b, c as fit parameters. Note
that the functional form of ωfit(q) is here arbitrary, i.e.,

n Jeff(1)/S/t Jeff(2)/S/t Jeff(2)/Jeff(1)

1.25 − 0.055 +0.018 − 0.343

1.33 − 0.094 +0.026 − 0.275

1.40 − 0.131 +0.028 − 0.216

1.50 − 0.142 +0.012 − 0.087

1.60 − 0.121 +0.001 − 0.001

1.66 − 0.093 − 0.011 +0.119

1.75 − 0.057 − 0.019 +0.333

1.80 − 0.039 − 0.016 +0.407

Table I. Nearest- and next-nearest-neighbor spin exchange,
Jeff(ℓ = 1, 2), of the effective Heisenberg model (13). The
last column represents the absolute value of the Jeff(2)/Jeff(1)
ratio.

our aim is to mimic the q-dependence of the S(q, ω) max-
imum in the whole range of wavevectors 0 < q < π, even
in the strongly incoherent region. The result of such a
procedure is presented as a black dashed line in Fig. 4,
while the details are presented in the App. C. Note that
the ωfit(q) is a crude approximation for n < 1.4 data
since the strong decoherence of excitations for q/π > 0.5
prevents an accurate fit. Nevertheless, our results indi-
cate a systematic variation with n even in this region
[see the summary of the results for various n presented
in Fig. 10(a)].

The estimate for Jeff(ℓ) is then obtained from Fourier
transform of ωfit(q). Our results presented in Fig. 10(b)
indicate that (i) nearest-neighbor (NN) exchange is neg-
ative Jeff(1) < 0 for all n, as expected for ferromagnet-
ically ordered systems. (ii) Furthermore, effective spin
exchanges decay fast beyond next-NN, Jeff(ℓ ≥ 3) ≃ 0.
Consequently, the fitted dispersion relation can be repro-
duced just with NN and next-NN interaction (see Tab. I).
In Fig. 11, we show exemplary dynamical spin struc-
ture factor S(q, ω) of the effective Heisenberg model (13)
with S = 1/2 and values of Jeff given in Tab. I and
Jeff(l ≥ 3) = 0. As evident from the presented re-
sults for n = 1.4, the maximum of S(q, ω) accurately
follows ωfit(q). However, the original spin structure fac-
tor presented in Fig. 4 is reproduced only qualitatively
since there is no magnon decoherence in the Heisenberg
model (13). On the other hand, for n = 1.8, we obtain
a quantitative agreement not only with ωfit(q) but also
with the magnons in the full model HgK, (2).

Interestingly, our Jeff results indicate the change in the
nature (sign) of Jeff(ℓ = 2) with density n. For n ≲ 1.6
the sign of spin exchange is AFM (Jeff(2) > 0), while
for n ≳ 1.6 FM (Jeff(2) < 0). This behavior coincides
with the change in the slope of Jq→0 presented in Fig. 5
and, more importantly, in the change in the behavior
of double-exchange magnons. Our analysis in the pre-
vious section indicates that for n ≲ 1.6, the magnons
strongly scatter on the Stoner continuum of incoherent
electrons, while for n ≳ 1.6, one observes the magnon
mode softening. Finally, it is worth noting that the ratio
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Figure 11. Dynamical spin structure factor S(q, ω) of the ef-
fective Heisenberg model as calculated for S = 1/2 and values
of spin exchange Jeff(ℓ = 1, 2) given by Tab. I for (a) n = 1.40
and (b) n = 1.80 (and Jeff(ℓ ≥ 3) = 0 otherwise). The red
dashed lines represent the fitted ωfit(q) dispersion for given n.
In all panels: L = 100, δω/t = 6 · 10−3 and η = 2δω.

|Jeff(2)/Jeff(1)| takes large values for extremes n, i.e., for
small n = 1.25 and large n = 1.80 doping. Such ratios are
consistent with experimental estimates on spin exchanges
[29] (note that the fourth-neighbor exchange used in the
three-dimensional model corresponds to Jeff(2) for the
1D lattice dimensionality).

As a final remark of this section, we want to com-
ment on the relation between Jeff and the electron cor-
relations. The spin-exchange interactions in effective
spin models derived from Kondo lattice-like Hamilto-
nians are typically linked to the kinetic energy of the
conduction electrons (reminiscent of the second scenario
for magnetism discussed in the introduction [2]). For
example, for JH → 0, the long-range spin exchange
mediated by itinerant electrons - the so-called Ruder-
man–Kittel–Kasuya–Yosida (RKKY) interaction - can be
perturbatively derived [81–83]. In the limit of S → ∞,
the 1/S spin-wave expansion [10, 37] relates Jeff(1) to
the average kinetic energy per bond and t/JH corrections
(in JH/t ≫ 1 limit) can also induce Jeff(2) coupling [39].
However, in the latter case, Jeff(2) ∝ 1/JH, i.e., are small
and of the same sign as Jeff(1). Such considerations can’t
capture the phenomena shown in Fig. 10 and Tab. I.

In electron-mediated spin exchange scenarios, Jeff(ℓ)
should be proportional to the static electron correlations
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Figure 12. (a) Static electron correlations Ce(ℓ) ∝ ⟨c†i ci+ℓ⟩
of gK model with S = 1/2 localized spins, calculated for
U/t = JH/t = 20, T z

tot = 0, and n = 1.25 , . . . , 1.80 (points).
Lines represent noninteracting spinless fermions solution
C(ℓ) = − sin(kff

Fℓ)/π/ℓ with kff
F = πnff = π(2− n). (b) Elec-

tron density n dependence of the ratio between nearest- and
next-nearest neighbor effective spin exchanges Jeff(2)/Jeff(1)
and electron correlations Ce(2)/Ce(1) = cos(kff

F).

[10] of the form

Ce(ℓ) =
1

L− ℓ

L−ℓ∑
σ,i=1

⟨c†iσci+ℓσ⟩ . (14)

Note that Ce(1) is proportional to the kinetic energy
of the system. Consistently with the previous discus-
sion, the results presented in Fig. 12(a) yield that the
behavior of electrons is that of noninteracting spinless
fermions at nff = 2− n density. For the latter, the elec-
tron correlations are given by Ce(ℓ) = − sin(kffFℓ)/π/ℓ
with kffF = πnff (the result with which we are in perfect
agreement). Within such a solution, the ratio between
nearest- and next-nearest neighbor correlations is given
by Ce(2)/Ce(1) = cos(nff

F). In Fig. 12(b) we contrast the
latter and Jeff(2)/Jeff(1) value obtained from the fits to
the dispersion. As evident, Ce only qualitatively captures
the effective spin exchange behavior, i.e., it captures the
overall change of sign of Jeff(2) with n. However, the
Ce(2)/Ce(1) changes sign for n = 1.5, while our data in-
dicate the change in Jeff(2)/Jeff(1) for n ≃ 1.6. Also, the
electron density n dependence of Ce(2)/Ce(1) is much
stronger than the one obtained from the fits.
Our results validate the experimental observation

[23, 27–29] that describing magnon mode softening
requires incorporating second-NN interactions along
a primary lattice direction in the effective spin
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model. In the three-dimensional classical spin-wave
consideration, this indicates strong spatial exchange
anisotropy, i.e., finite coupling in [1, 0, 0] , [0, 1, 0] , [0, 0, 1]
and [2, 0, 0] , [0, 2, 0] , [0, 0, 2] direction and vanishing in
[1, 1, 0] , [1, 0, 1] and [1, 1, 1] direction. Various scenar-
ios were proposed for the origin of this non-monotonic
behavior, e.g., coupling to phonons [43], orbital order-
ing [27], or breakdown of the canonical double-exchange
limit [33]. Here, we show that calculations within a fully
quantum model reproduce the experimental findings.

V. TWO-ORBITAL HUBBARD MODEL

The generalized Kondo model (2) with S = 1/2 local-
ized moments is an effective description of the OSMP of
the two-orbital Hubbard model [65]. However, ferromag-
netically ordered phases occur over a wide range of pa-
rameters in (1), even in the absence of apparent localized
electrons [84–89], that is, with finite charge fluctuations
in all orbitals. In such situations, the spin excitation
analysis must be performed in the full multiorbital setup.

In this Section, we will consider the two-orbital
Hubbard-Kanamori model (1) with hopping t00 = 0.5,
t01 = t10 = 0, varying t11 ≤ t00, and crystal field
∆CF/t = 0.2. We expect that orbital differentiation, pre-
dominantly induced by t11 ̸= t00, leads to the OSMP
phase for sufficiently large Hubbard and Hund inter-
actions, as shown in previous studies [60, 61, 66, 90].
Here, we choose a representative large Hubbard interac-
tion U/t = 32. In multiorbital systems, both the Hub-
bard and Hund values originate from Coulomb interac-
tions [91]. Consequently, we link these two parameters
by the relation JH = U/4 [18, 92, 93]. Finally, to match
the results of this Section to the previous ones, we select
a total electron density of n = 2.33 , 2.50 , 2.80. If the
system enters the OSMP, such n will correspond to one
electron in the Mott localized orbital (γ = 1) and an elec-
tron density of 1.33 , 1.50 , 1.80 on the itinerant orbital
(γ = 0), respectively. In Fig. 13 we present the hop-
ping imbalance t11/t00 dependence of the orbital γ = 0, 1
resolved electron density nγ =

∑
ℓ nγℓ. Our results in-

dicate that for the large enough orbital differentiation
(here t11/t00 = 0.2), the γ = 1 orbital is singly occupied
for all considered values of n, indicating OSMP. In the
opposite limit of equal bandwidth, t00 = t11, for n = 2.50
and n = 2.80, both orbitals are fractionally occupied; see
Fig. 13(b,c). For n = 2.33, the system is in the OSMP
even for t00 = t11 due to a finite crystal field-splitting
∆CF ̸= 0.

The main result of this Section, namely the dynamical
spin structure factor S(q, ω) of the two-orbital Hubbard
model in the U , JH ≫ t limit, is shown in Fig. 14. Here,
we use Tℓ = S0ℓ + S1ℓ in Eq. (7). For almost all con-
sidered parameters, we observe strong magnon decoher-
ence. The exceptions are the results for n = 2.80 and
t11/t00 ≳ 0.5, where magnon mode softening is visible.
Note that the results for n = 2.33 = 1 + 1.33 of the HK
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Figure 13. Orbitally-resolved electron density nγ for γ = 0 , 1
of the two-orbital Hubbard-Kanamori model as a function of
orbital differentiation t11/t00. Calculated for L = 60 sites,
U/t = 32, JH = U/4, and (a,b,c) n = 2.33 , 2.50 , 2.80, respec-
tively.

model (1) are consistent with the results for n = 1.33 of
gK (2) for all values of t11/t00 considered. On the other
hand, for n = 2.80 = 1+1.80, only the t11/t00 = 0.2 (i.e.,
in the OSMP region) dispersion is akin to the n = 1.80
gK results.

This behavior can be easily understood through in-
sights from the magnon dispersion analysis of the gK
model presented in previous Sections. There, we ob-
served a reduced magnon lifetime when the density of
(itinerant) electrons was smaller than 1.5, i.e., when the
incoherent part of the spectrum had sharp features close
to the Fermi level. We repeat this analysis for the HK
model (2) evaluating the single-particle spectral function
A(q, ω) in the T z

tot = 0 magnetization sector, as well as
A↑(q, ω) in the ↑-polarized system [T z

tot = (4 − n)L/2]
to resolve the incoherent part of the spectrum. The re-
sults for n = 2.33 , 2.50 , 2.80 and t11/t00 = 0.5 are shown
in Fig. 15. Before we discuss our findings, two general
remarks are necessary. Firstly, within the HK model,
the single-particle spectra can be orbitally resolved [i.e.,

cℓ → cγℓ and c†ℓ → c†γℓ in Eq. (5)]. Secondly, it is evident

that the spectral function A(q, ω) of HK model (2) is far
more complicated than the one presented in Fig. 1 for
the gK model. For the cases beyond the OSMP regime,
namely n = 2.50 , 2.80, we do not observe any signature
of well-defined quasiparticles [a δ(ω)-like spectral feature
as in the case of Fig. 1], at least within the limitations
of our computational techniques. Instead, a broad spec-
trum known from generic strongly-correlated systems is
found. To avoid confusion, in the following, we reserve
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Figure 14. Dynamical spin structure factor S(q, ω) of the two-orbital Hubbard-Kanamori (HK) model in the U , JH ≫ t limit for
various hopping imbalances hopping imbalances t11/t00 = 1.0 , 0.8 , 0.5 , 0.2 (rows) and electronic densities n = 2.33 , 2.50 , 2.80
(columns). In all panels: L = 60, t00 = 0.5, ∆CF/t = 0.2, U/t = 32, JH/U = 1/4, δω/t = 4 · 10−3 and η = 2δω.

the term incoherent spectrum for the part found in the ↑-
polarized system by investigating the electrons with spin
parallel to polarization A↑(k, ω), following the analysis
presented in Sec. III.

Consider first the data for n = 2.33 and t11/t00 =
0.5 shown in the left column of Fig. 15. The A(q, ω) of
the itinerant orbital γ = 0 (also the incoherent part) is
identical to the gK result at the corresponding filling (n =
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Figure 15. Single-particle spectral function A(q, ω) in the T z
tot = 0 sector (large panels) and the incoherent spectrum evaluated

in the ↑-polarized system [T z
tot = (4 − n)L/2] (small panels) calculated for the two-orbital HK model. The upper (lower) row

represents the γ = 0 (γ = 1) orbital data. Panels (a,b,c) depict data for n = 2.33 , 2.50 , 2.80, respectively. In all panels: L = 60,
t11/t00 = 0.5, ∆CF/t = 0.2, U/t = 32, JH/U = 1/4, δω/t = 4 · 10−2 and η = 2δω.

1.33); compare Fig. 15(a1) with Fig. 1(a) and Fig. 8(a).
In the localized orbital γ = 1, Fig. 15(a2), the gap at the
Fermi level opens, and no incoherent part of the spectrum
is present, consistent with the OSMP prediction. The
spin structure factor for such a density (shown in the
left column of Fig. 14) also agrees with the previous gK
result, i.e., an incoherent magnon spectra develops for
q/π > 0.6. Since the n = 2.33 results are always in the
OSMP region for all considered parameters, the above
behavior holds for all the t11/t00 cases.

The single-particle spectrum outside the OSMP, n =

2.50 , 2.80 for t11/t00 = 0.5, is different. Here, both or-
bitals contribute to the states at the Fermi level ω = 0.
For equal bandwidth, the occupation in both orbitals is
approximately (due to the presence of small ∆CF ̸= 0)
equal to nγ ≃ n/2 < 1.5, leading to the metallic nature
of both orbitals. The gK analysis indicates that such
densities should lead to the presence of the incoherent
A↑(q, ω). The results presented in Fig. 15(b,c) indicate
that, indeed, both orbitals contain an incoherent part be-
low ω = 0 leading to incoherent magnon spectra in q → π
limit; see Fig. 14(a2,a3).
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Figure 16. Wavevector q dependence of the magnon linewidth
Γ for various hopping imbalances t11/t00 of the HK model.
Panels (a,b,c) represent the n = 2.33 , 2.50 , 2.80 electron den-
sities, respectively. Points represent the result of the fit,
Eq. (8), while solid lines represent guides to the eye. The
black dashed line represents the corresponding gK result; see
Fig. 5(b).

Increasing the hopping imbalance, i.e., decreasing the
ratio t11/t00 < 1, moves the system into the OSMP re-
gion when the electron density of the localized orbital
γ = 1 reaches unity, transferring the weight to the itiner-
ant orbital γ = 0. Our gK results indicate that the den-
sity on the latter orbital controls the incoherent spectra,
which in turn influences the magnon behavior. In the
case of n = 2.50, this leads (within OSMP) to incoher-
ent magnons within a finite range of q, similar to the
n = 1.50 results of gK. For n = 2.80, magnon mode
softening is observed, known from n = 1.80 gK consider-
ations. One can monitor this scenario by examining the
behavior of the magnon linewidth Γ depicted in Fig. 16.
For the n = 2.33 case, we do not observe any significant
change in Γ with t11/t00 since the system remains in the
OSMP. For other considered values of electron densities,
initially (t00 ≃ t11), a strong reduction of magnon life-
time is present. With increasing imbalance, the magnon
regains partial coherence for q → π for n = 2.50 or full
coherence (and mode softening) for n = 2.80. The re-
sults are consistent with the gK prediction in all cases,
provided that the system is in OSMP (see dashed line in
Fig. 16).

VI. DISCUSSION & CONCLUSIONS

Our results indicate that large Hund interaction, JH,
in the fully quantum Kondo-like models leads to the
emergence of two types of quasiparticles in the system.
The first ones resemble spinless fermions and constitute a
band of nearly noninteracting quasiparticles. For a fully
polarized system, the latter represents minority spin elec-
trons, i.e., σ =↓ electrons (being part of the doublon) in
↑-polarized system T z

tot = SL+ sL(2−n). The situation
is more complicated for T z

tot = 0 since one has to form a
spinless quasiparticle out of two spinfull electrons. In the
atomic limit, for JH ≫ t and n > 1, the ground state is
built out of doublons and three triplet projections, i.e.,

|gs⟩atomic ≃
1

2
|D↑⟩+

1

2
|D↓⟩+

1

2
|T0⟩+

1

2
|T±1⟩ ,

where

|D↑⟩ =

∣∣∣∣∣↑2
〉

, |D↓⟩ =

∣∣∣∣∣↓2
〉

,

|T0⟩ =
1√
2

∣∣∣∣∣↑↓
〉

+
1√
2

∣∣∣∣∣↓↑
〉

,

|T±1⟩ =
1√
2

∣∣∣∣∣↑↑
〉

− 1√
2

∣∣∣∣∣↓↓
〉

.

Note that the doublons |Dσ⟩ are spinfull, i.e., each dou-
ble occupancy in the itinerant band is accompanied by
σ =↑ or σ =↓ spin in the localized band. Consequently,
a natural candidate for low-energy (in proximity to the
Fermi level) incoherent states that contribute to a spin-
less quasiparticle is the local singlet superposition of dou-
blons

|D⟩ = 1√
2

∣∣∣∣∣↑2
〉

− 1√
2

∣∣∣∣∣↓2
〉

.

In principle, one could also build the (local) singlet
out of triplet projections (i.e., |T0⟩ and |T±⟩). Such a
state would resemble the Affleck–Kennedy–Lieb–Tasaki
(AKLT) state of S = 1 Heisenberg model [94, 95] (the
state realized for half-filling in the two-orbital Hubbard-
Kanamori model (1) [96]). However, the latter possesses
topological properties, which we didn’t observe in our
investigations.
The second type of excitation forms a broad, incoher-

ent band just below the Fermi level. Such excitations
arise from the local triplets, which are part of the ground
state in the atomic limit but are not part of the many-
body state for a given polarization. For example, for
↑-polarized system, T z

tot = SL + sL(2 − n), the ground
state is built out of doublons and T z

ℓ = 1 local triplets,
while the incoherent part has a projection on the local
triplet with T z

ℓ = 0, i.e., |T0⟩. Note that such particles
result from the quantum nature of localized spins, i.e.,
from the various local multiplets for given n.
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Interestingly, these two types of excitations have vastly
different behavior. One is spinless, i.e., carrying effective
spin Seff = 0, while the other Seff = 1. The spinless
quasiparticles exist above and below the Fermi level, and
they mainly determine the properties of the system re-
lated to electron correlations, kinetic energy, and charge
fluctuations (see App. A). Our numerical results confirm
such behavior, reproducing the noninteracting spinless
solution perfectly. While the spinless particles are nonin-
teracting, yielding a sharp cos-like dispersion relation, a
very broad and incoherent spectrum of the Seff = 1-type
indicates a strong interaction between them and/or with
other degrees of freedom (e.g., with magnons). Due to
the latter, the incoherent band is vital in understanding
magnon decoherence.

For all considered electron densities, n, the disper-
sion of the spin excitations deviates strongly from the
simple Holstein–Primakoff consideration for the nearest-
neighbor exchange coupling ∝ [1− cos(q)]. In agreement
with experimental investigation on manganites (which
realize JH|S| → ∞ limit), we observe that magnons
strongly decohere and/or change the dispersion towards
the edge of the Brillouin zone, i.e., for q → π. The strong
damping of magnons can be explained as a consequence
of their interaction with the Stoner-like continuum, which
is built out of transitions between coherent spinless quasi-
particles and incoherent excitations. It’s important to
note that such considerations go beyond the standard
mean-field treatment of the Hund coupling. While the
spinless quasiparticles appear already in S → ∞ treat-
ment of gK model (2) [78], the incoherent band of ex-
citations is a consequence of the quantum nature of lo-
calized spin (i.e., S = 1/2). Furthermore, it is worth
noting that the excitations above the ferromagnetically
ordered ground state don’t depend strongly on the lattice
dimensionality (at least within the Holstein–Primakoff
treatment). Consequently, our findings are relevant for
a broad family of ferromagnetically ordered multiorbital
compounds, especially displaying the OSMP properties.

Our results clearly show that magnon damping and
mode softening in quantum double-exchange ferromag-
nets are present without the Jahn-Teller phonons (i.e.,
without any spin-lattice/orbit coupling in the model).
The latter is the canonical explanation [40, 42] of these
phenomena for JH|S| → ∞ manganites. Although the
Jahn-Teller distortion is necessary for the proper descrip-
tion of such compounds [9, 13, 30, 41, 97], our results
give an alternative explanation for the origin of nontriv-
ial spin dynamics. This is a remarkable result with im-
portant implications. There may be cases in materials
where experimental features are believed to emerge from
a combination of degrees of freedom that are not as active
as assumed in the past.
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Appendix A: Charge dynamics

Here, we discuss the behavior of the dynamical charge
structure factor defined as

N(q, ω) =
1

L

∑
ℓ

ei(ℓ−L/2)q ⟨⟨nℓnL/2⟩⟩−ω , (A1)

for the system parameters discussed in Fig. 1 and Fig. 4
of the main text, i.e., for the generalized Kondo (gK)
model with S = 1/2 localized spins, U/t = JH/t = 20,
L = 200 sites, and T z

tot = 0 magnetization sector. Here
nℓ = nℓ↑+nℓ↓. In Fig. 17, we present N(q, ω) for various
electron densities n. It is important to note that the total
energy span of N(q, ω), and even the bottom of N(q, ω),
lies much above the spin excitations bandwidth WS.

Our results indicate a perfect agreement between
N(q, ω) obtained within the gK model in the JH ≫ t
limit and the free-fermion solution. Specifically, for non-
interacting spinless electrons, one can evaluate the charge
structure factor N(q, ω) exactly [98, 99]. Such calcula-
tions are equivalent to the Stoner continuum of the form

ωSff(q) = ωff(k1)− ωff(k2) , (A2)

where q = mod (k1+ k2, L), k1 > kF, and k2 < kF, and
the free-fermion band ωff(q), Eq. (6). Note that within
Stoner-like considerations, one of the bands in (A2) rep-
resents σ =↑ electrons, while the second band represents
σ =↓ electrons. The above perfect agreement between
the noninteracting solution ωSff(q) and full many-body
calculations of N(q, ω) within the gK model (2) in the
JH/t ≫ 1 limit indicates that the charge fluctuations are
indifferent to the incoherent band of excitations.

http://wcss.pl
https://code.ornl.gov/gonzalo_3/dmrgpp
https://bitbucket.org/herbrychjacek/corrwro/
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Figure 17. Dynamical charge structure factor N(q, ω) of the gK model with S = 1/2 localized spin in the JH ≫ t limit
(U/t = JH/t = 20, T z

tot = 0 magnetization sector) for various electron doping levels, n = 1.33 , 1.40 , 1.50 , 1.60 , 1.66 , 1.80 [panels
(a) to (f), respectively]. The red dashed line represents the borders of the Stoner continuum calculated from noninteracting
bands, Eq. (A2). The white dashed line in all panels represents the span of the spin excitations WS. See Fig. 5(a). In all
panels: L = 200, δω/t = 5 · 10−3 and η = 2δω.

Appendix B: Hubbard and Hund interaction
dependence

In Sec. IVA, we demonstrated that the Hubbard in-
teraction U opens a small gap in the incoherent part of
the single-particle spectral function A(q, ω). Here, we
provide a detailed analysis of this phenomenon. Further-
more, we present additional results of A(q, ω) and the
dynamical spin structure factor S(q, ω) for various val-
ues of the Hubbard U and Hund JH interaction.
As discussed in the main text, the role of the Hubbard

interaction (even for large U ≫ t) is minor. Only the
incoherent part of the single-particle spectral function
differs between different values of U . The detailed anal-
ysis of the latter is presented in Fig. 18. Upon increasing
the value of U , one can observe that the large spectral
weight of the incoherent part slowly shifts from ω = 0
for U = 0, through ω/t ≃ 0.05 for U/t = 10 to ω/t ≃ 0.1
at U/t = 20 [see Fig. 18(a1,b1,c1)]. The latter yields an
incoherent gap ∝ U , i.e., ∆inco(U)/t = 0, 0.05, 0.1, for
U = 0 , 10 , 20, respectively. The Stoner continuum with
the gap values corresponding to the position of the maxi-
mum spectral weight and the spin excitations S(q, ω) are
presented in the second row of Fig. 18. We find that the
region in which the magnons lose coherence for a given U

is better described by ωinco(q), Eq. (12), and the corre-
sponding bottom of the Stoner continuum ωBS(q) when
the appropriate ∆inco(U) is included [see dashed lines in
Fig. 18(a2,b2,c2)].
Finally, our analysis indicates that both A(q, ω) and

S(q, ω) do not depend substantially on the values of the
Hund exchange JH, provided that JH ≫ t. In Fig. 18(c-
f), we present results for JH/t = 10, 20, 40. Specifically,
the gap ∆inco does not change for all considered Hund
values. Similarly, the region with a decreased magnon
lifetime is the same for all considered JH.

Appendix C: S(q, ω) fits details

In Sec. IVB, we have shown the analysis of the magnon
dispersion relation obtained from the fits ωfit(q) to the
maximum of S(q, ω) for given q (i.e., to the data pre-
sented in Fig. 4). We have chosen ωfit(q) = a tanh(b qc)
as a fit function, and the results of the procedure are
given in Tab. II. Note that the functional form of ωfit(q)
is arbitrary and ”simple” polynomial fit ωfit(q) ∝

∑
i ai q

i

would yield similar results. Nevertheless, the tanh func-
tion is consistent across all considered electron densities
n. Since in the inversion symmetric systems, one expects
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Figure 18. Analysis of (a-c) the Hubbard interaction U (for fixed JH/t = 20) and (d-f) the Hund exchange (for fixed U/t = 20)
dependence of the single-particle spectral function A(q, ω) and the dynamical spin structure factor S(q, ω) of the gK model.
(a1,b1,c1) Incoherent part of A(q, ω) as calculated for U/t = 0 , 10 , 20, respectively. Dashed lines represents approximation
ωinco(q), Eq. (12), with ∆inco/t = 0 , 0.05 , 0.1. (a2,b2,c2) Spin excitations S(q, ω) are calculated for the corresponding values of
U . Dashed lines (red, green, white) represent the bottom of the Stoner continuum ωBS(q) evaluated for ∆inco/t = 0 , 0.05 , 0.1,
respectively. (d1-f1) Hund exchange JH/t = 10 , 20 , 40 dependence of the incoherent part of A(q, ω) and (d2-f2) corresponding
S(q, ω). Other parameters of the calculations: A(q, ω) data, panels (a1-f1), calculated with δω/t = 4 · 10−2 and T z

tot =
SL+ sL(2−n). S(q, ω) data, panels (a2-f2), are calculated with δω/t = 6 ·10−3 and T z

tot = 0. In all panels: n = 1.50, L = 200,
and η = 2δω.
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q → −q symmetry, we explicitly assume ωfit(2π − q) =
ωfit(q), i.e., we investigate only 0 ≤ q ≤ π.

n 1.25 1.33 1.40 1.50 1.60 1.66 1.75 1.80

a 0.30 0.43 0.55 0.55 0.47 0.36 0.23 0.16

b 0.04 0.06 0.08 0.14 0.20 0.30 0.50 0.60

c 3.0 2.9 2.8 2.5 2.2 2.0 2.0 2.0

Table II. Fit parameters a, b, and c of the
ωfit(q) = a tanh(b qc) function for various electron densi-
ties n.
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[31] W. Koller, A. Prüll, H. G. Evertz, andW. von der Linden,
Magnetic polarons in the one-dimensional ferromagnetic

https://doi.org/10.1007/BF01328601
https://doi.org/10.1007/BF01328601
https://doi.org/10.1016/0304-8853(79)90201-4
https://doi.org/10.1016/0304-8853(79)90201-4
https://doi.org/10.1088/0034-4885/11/1/304
https://doi.org/10.1088/0034-4885/11/1/304
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRevB.65.212303
https://doi.org/10.1103/PhysRevB.65.212303
https://doi.org/10.1007/b114807
https://doi.org/10.1007/978-3-662-05244-0
https://doi.org/10.1007/978-3-662-05244-0
https://doi.org/10.1007/978-94-015-1244-2_7
https://doi.org/10.1016/S0370-1573(00)00121-6
https://doi.org/10.1103/PhysRevLett.76.1122
https://doi.org/10.1103/PhysRevLett.84.3714
https://doi.org/10.1103/PhysRevLett.84.3714
https://doi.org/10.1103/PhysRevLett.84.2477
https://doi.org/10.1103/PhysRevLett.88.017201
https://doi.org/10.1103/PhysRevLett.88.017201
https://doi.org/10.1103/PhysRevLett.90.247203
https://doi.org/10.1103/PhysRevLett.90.247203
https://doi.org/10.1557/mrs2008.223
https://doi.org/10.1557/mrs2008.223
https://doi.org/10.1103/PhysRevB.82.104508
https://doi.org/10.1103/PhysRevB.82.104508
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRev.100.675
https://doi.org/10.1103/PhysRev.118.141
https://doi.org/10.1103/PhysRevLett.80.4012
https://doi.org/10.1103/PhysRevLett.80.4012
https://doi.org/10.1103/PhysRevLett.80.1316
https://doi.org/10.1103/PhysRevLett.80.1316
https://doi.org/10.1063/1.367634
https://doi.org/10.1103/PhysRevB.61.9553
https://doi.org/10.1103/PhysRevB.66.214408
https://doi.org/10.1103/PhysRevB.66.214408
https://doi.org/10.1103/PhysRevLett.94.017206
https://doi.org/10.1103/PhysRevLett.94.017206
https://doi.org/10.1103/PhysRevLett.96.047204
https://doi.org/10.1103/PhysRevLett.96.047204
https://doi.org/10.1088/0953-8984/19/31/315204
https://doi.org/10.1088/0953-8984/19/31/315204
https://doi.org/10.1103/PhysRevB.62.9432


23

Kondo model, Phys. Rev. B 67, 174418 (2003).
[32] D. R. Neuber, M. Daghofer, H. G. Evertz, W. von der

Linden, and R. M. Noack, Ferromagnetic polarons in the
one-dimensional ferromagnetic Kondo model with quan-
tum mechanical S = 3/2 core spins, Phys. Rev. B 73,
014401 (2006).

[33] I. V. Solovyev and K. Terakura, Zone Boundary Soften-
ing of the Spin-Wave Dispersion in Doped Ferromagnetic
Manganites, Phys. Rev. Lett. 82, 2959 (1999).

[34] T. A. Kaplan, S. D. Mahanti, and Y.-S. Su, Non-Stoner
Continuum in the Double Exchange Model, Phys. Rev.
Lett. 86, 3634 (2001).

[35] X. Wang, Theory of spin waves in a ferromagnetic Kondo
lattice model, Phys. Rev. B 57, 7427 (1998).

[36] M. Vogt, C. Santos, and W. Nolting, Magnons in the
Ferromagnetic Kondo-Lattice Model, phys. stat. sol. (b)
223, 679 (2001).

[37] N. Shannon and A. V. Chubukov, Spin-wave expansion,
finite temperature corrections, and order from disorder
effects in the double exchange model, Phys. Rev. B 65,
104418 (2002).

[38] A. Schwabe and W. Nolting, Interacting spin waves in
the ferromagnetic Kondo lattice model, Phys. Rev. B 80,
214408 (2009).

[39] M. Frakulla, J. Strockoz, D. Antonenko, and J. W. F.
Venderbos, Kondo-Heisenberg toy models: Comparison
of exact results and spin wave expansion, arXiv (2024),
arXiv:2408.16752.

[40] N. Furukawa, Magnon Linewidth Broadening due to
Magnon-Phonon Interactions in Colossal Magnetoresis-
tance Manganites, J. Phys. Soc. Jpn. 68, 2522 (1999).

[41] T. Hotta, S. Yunoki, M. Mayr, and E. Dagotto, A-type
antiferromagnetic and C-type orbital-ordered states in
LaMnO3 using cooperative Jahn-Teller phonons, Phys.
Rev. B 60, R15009 (1999).

[42] G. Khaliullin and R. Kilian, Theory of anomalous
magnon softening in ferromagnetic manganites, Phys.
Rev. B 61, 3494 (2000).

[43] L. M. Woods, Magnon-phonon effects in ferromagnetic
manganites, Phys. Rev. B 65, 014409 (2001).

[44] S. Krivenko, Y. A., K. G., and H. Fehske, Magnon soft-
ening and damping in the ferromagnetic manganites due
to orbital correlations, J. Magn. Magn. Mater. 272, 458
(2004).

[45] F. Ye, P. Dai, J. A. Fernandez-Baca, D. T. Adroja, T. G.
Perring, Y. Tomioka, and Y. Tokura, Spin waves through-
out the Brillouin zone and magnetic exchange coupling in
the ferromagnetic metallic manganites La1−xCaxMnO3

(x = 0.25, 0.30), Phys. Rev. B 75, 144408 (2007).
[46] G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S.

Dodge, C.-B. Eom, D. H. A. Blank, and M. R.
Beasley, Structure, physical properties, and applications
of SrRuO3 thin films, Rev. Mod. Phys. 84, 253 (2012).

[47] A. Georges, L. de’ Medici, and J. Mravlje, Strong Corre-
lations from Hund’s Coupling, Annu. Rev. Condens. Mat-
ter Phys. 4, 137 (2013).

[48] R. M. Fernandes and A. V. Chubukov, Low-energy micro-
scopic models for iron-based superconductors: a review,
Rep. Prog. Phys. 80, 014503 (2016).

[49] F. Mancini and R. Citro, eds., The Iron Pnictide Su-
perconductors: An Introduction and Overview (Springer
International Publishing, 2017).

[50] D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman,
C. B. Eom, and V. Chandrasekhar, Coexistence of Su-

perconductivity and Ferromagnetism in Two Dimensions,
Phys. Rev. Lett. 107, 056802 (2011).

[51] S. Bao, W. Wang, Y. Shangguan, Z. Cai, Z.-Y. Dong,
Z. Huang, W. Si, Z. Ma, R. Kajimoto, K. Ikeuchi,
S. Yano, S.-L. Yu, X. Wan, J.-X. Li, and J. Wen, Neu-
tron Spectroscopy Evidence on the Dual Nature of Mag-
netic Excitations in a van der Waals Metallic Ferromag-
net Fe2.72GeTe2, Phys. Rev. X 12, 011022 (2022).

[52] Z. Wu, T. I. Weinberger, J. Chen, and A. G. Eaton,
Enhanced triplet superconductivity in next-generation
ultraclean UTe2, Proc. Natl. Acad. Sci. U.S.A. 121,
e2403067121 (2024).

[53] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz,
S. R. Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione, and
N. P. Butch, Nearly ferromagnetic spin-triplet supercon-
ductivity, Science 365, 684 (2019).

[54] O. Atsushi and I. Sumio, Photocontrol of magnetic struc-
ture in an itinerant magnet, Phys. Rev. B 98, 214408
(2018).

[55] R. Sujay and W. Philipp, Photoinduced ferromagnetic
and superconducting orders in multiorbital Hubbard mod-
els, Phys. Rev. B 110, L041109 (2024).

[56] M. Vojta, Orbital-Selective Mott Transitions: Heavy
Fermions and Beyond, J. Low Temp. Phys. 161, 203
(2010).

[57] F. B. Kugler and G. Kotliar, Is the Orbital-Selective Mott
Phase Stable against Interorbital Hopping?, Phys. Rev.
Lett. 129, 096403 (2022).

[58] E. A. Stepanov, Eliminating Orbital Selectivity from the
Metal-Insulator Transition by Strong Magnetic Fluctua-
tions, Phys. Rev. Lett. 129, 096404 (2022).

[59] H. Hu, L. Chen, J.-X. Zhu, R. Yu, and Q. Si, Orbital-
selective Mott phase as a dehybridization fixed point,
arXiv (2022), arXiv:2203.06140.

[60] J. Rincón, A. Moreo, G. Alvarez, and E. Dagotto, Ex-
otic Magnetic Order in the Orbital-Selective Mott Regime
of Multiorbital Systems, Phys. Rev. Lett. 112, 106405
(2014).

[61] J. Herbrych, N. Kaushal, A. Nocera, G. Alvarez,
A. Moreo, and E. Dagotto, Spin dynamics of the block
orbital-selective Mott phase, Nat. Commun. 9, 3736
(2018).
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