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Witnessing Entanglement and Quantum Correlations in
Condensed Matter: A Review

Pontus Laurell,* Allen Scheie, Elbio Dagotto, and D. Alan Tennant*

The detection and certification of entanglement and quantum correlations in
materials is of fundamental and far-reaching importance, and has seen
significant recent progress. It impacts both the understanding of the basic
science of quantum many-body phenomena as well as the identification of
systems suitable for novel technologies. Frameworks suitable to condensed
matter that connect measurements to entanglement and coherence have
been developed in the context of quantum information theory. These take the
form of entanglement witnesses and quantum correlation measures.
The underlying theory of these quantities, their relation to condensed matter
experimental techniques, and their application to real materials are
comprehensively reviewed. In addition, their usage in, e.g., protocols, the
relative advantages and disadvantages of witnesses and measures, and future
prospects in, e.g., correlated electrons, entanglement dynamics, and
entangled spectroscopic probes, are presented. Consideration is given to the
interdisciplinary nature of this emerging research and substantial ongoing
progress by providing an accessible and practical treatment from
fundamentals to application. Particular emphasis is placed on quantities
accessible to collective measurements, including by susceptibility and
spectroscopic techniques. This includes the magnetic susceptibility witness,
one-tangle, concurrence and two-tangle, two-site quantum discord, and
quantum coherence measures such as the quantum Fisher information.

1. Introduction

Given a device or material sample, how can we detect, cer-
tify, and quantify its quantum entanglement and coherence, or,
more generally, “quantumness”? This is a central question for
applications,[1–6] because these are precisely the properties that
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enable quantum systems and technolo-
gies to outperform their classical coun-
terparts. It is also important in funda-
mental quantum many-body physics, as
methods for entanglement and coherence
detection methods can access previously
unavailable quantitative information about
their wave functions and enrich our un-
derstanding of quantum states of matter.
As with many questions of such a

fundamental nature, the proposed an-
swers are only partial and still devel-
oping. This is largely because quantum
many-body states have very rich struc-
tures, allowing for a plethora of ways in
which their degrees of freedom may be
entangled or—more generally—quantum
correlated.[7–12] This fact, along with ex-
perimental considerations, means that dif-
ferent classes of many-body systems call
for different diagnostic approaches. In
this review, we focus on achievements in,
and methods for, detecting quantum cor-
relations in quantum materials.[13–16] A
broader perspective on different experi-
mental platforms for many-body physics
and a pedagogical introduction to the
classification of quantum correlations was

provided in a recent review.[17] Some readers may also be in-
terested in a shorter outlook article[18] that briefly reviews ex-
perimental entanglement measurements in low-dimensional
metal complexes.
Quantum materials are condensed matter systems built up

from electronic or spin degrees of freedom. Their physics is

P. Laurell
Department of Physics and Astronomy
University of Missouri
Columbia, MO 65211, USA
A. Scheie
MPA-Q
Los Alamos National Laboratory
Los Alamos, NM 87545, USA
E. Dagotto
Materials Science and Technology Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA
D. A. Tennant
Department of Materials Science and Engineering
University of Tennessee
Knoxville, TN 37996, USA

Adv. Quantum Technol. 2024, 2400196 2400196 (1 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH

http://www.advquantumtech.com
mailto:plaurell@missouri.edu
mailto:dtennant@utk.edu
https://doi.org/10.1002/qute.202400196
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fqute.202400196&domain=pdf&date_stamp=2024-11-05


www.advancedsciencenews.com www.advquantumtech.com

typically driven by local electronic interactions originating in
the Pauli exclusion principle and Coulomb force, yet allows
for a wealth of emergent physical states at meso- and macro-
scopic scales. Some of themost intriguing and sought-after quan-
tum phases of matter are known to be highly entangled; see,
for example, quantum critical states[21,22] and topologically or-
dered states,[23] including fractional quantum Hall states[24,25]

and quantum spin liquids.[26–28] Notably, topological order en-
ables emergent fractional quasiparticles, which may be of use for
fault-tolerant topological quantum computing technologies.[29,30]

However, their unambiguous experimental demonstration has
proven to be very challenging, which calls for reconsideration
of our experimental probes and the information we extract from
them. Although there currently is no known way to experimen-
tally measure the topological entanglement in such states, it is
a worthy goal to pursue, and perhaps one that may be informed
by the recent progress reviewed here on probing the more local
entanglement in strongly correlated electron systems.
In contrast to other many-body platforms—such as net-

works of superconducting qubits,[31] nitrogen-vacancy (NV)
centers,[32,33] or cold atoms in optical lattices[34,35]—quantumma-
terials are more closely packed and typically allow only for col-
lective measurements. Indeed, addressing individual degrees of
freedomof quantummaterials is extremely difficult given themi-
croscopic scales and geometry, while interferometry and quan-
tum state tomography are rarely possible because of the large
numbers of constituent particles.[36–38] Instead, we rely largely
on transport experiments, thermodynamic measurements and
solid-state spectroscopy techniques. The latter includes linear-
response techniques that are highly sensitive to correlations be-
tween local degrees of freedom, such as inelastic neutron scat-
tering, x-ray scattering, etc. The most promising way of using
these probes to extract information about the entanglement of
materials is through “entanglement witnesses.” These are ob-
servables that serve as order parameters for specific classes of
entangled states. A particularly important class of witnesses
are related to quantum coherence measures. These include the
quantum Fisher information,[39] which has recently attracted
significant experimental attention. Witnesses associated with
collective measurements are useful not only for investigating
the suitability of materials for future applications; since con-
densed matter systems can be easier to hold at thermal equi-
librium than other many-body platforms, such witnesses also
offer a promising approach for studying fundamental prop-
erties of entanglement and quantum correlations in thermal
states.
This review is outlined as follows. We first conceptually intro-

duce the idea of entanglement witnesses, and their role in dif-
ferent platforms for many-body physics in Section 2. We then
proceed with the mathematically heavier Section 3, in which we
present a variety of experimentally relevant witnesses, and pro-
vide important derivations. In Section 4 we survey experimen-
tal applications of witnesses to detect and quantify entangle-
ment in the solid state. In Section 5 we provide a broader and
forward-looking perspective on entanglement detection in quan-
tum materials. In the more specialized Section 6 we focus on
technical developments and challenges for entanglement detec-
tion in quantum materials using scattering experiments. The re-
view ends with a brief Conclusion section, Section 7. Appendix A

provides a brief introduction to linear response theory, setting a
consistent notation.

2. Conceptual Background

It was realized early on that quantum mechanics had a subtle
unexpected consequence known as entanglement.[40–42] In brief,
this is a phenomenon of a group of quantum degrees of free-
dom, in which the quantum state of an individual degree of free-
dom can depend on the state of the others, even across vast dis-
tances. It was not a priori clear if this effect was due to the prob-
abilistic nature of quantum mechanics, or if it would be bet-
ter explained using a hidden-variable theory (i.e. a determinis-
tic extension of quantum mechanics with additional variables).
Decades later, Bell showed that entanglement has experimental
consequences in the form of inequalities constructed from corre-
lations of observables,[43,44] now known as Bell inequalities. Viola-
tions of these inequalities allow ruling out classical behavior and
local hidden-variable theories. One key insight is that informa-
tion about entanglement is embedded in two-point correlation
functions, which remain a crucial component in entanglement
detection. Indeed, the 2022 Nobel prize in physics was awarded
to Aspect, Clauser and Zeilinger “for experiments with entangled
photons, establishing the violation of Bell inequalities and pio-
neering quantum information science.”
Although many such Bell inequalities have been derived,[1,45]

a common formulation is the CHSH inequality.[20] If we as-
sume particles A and B (Bell envisioned electron spins, but ex-
periments often measure photon polarization) and the pairwise
spin/photon polarization is measured at different orientations
(A0, A1, B0, B1; see Figure 1a) in four separate sub-experiments,
there is an inequality that is always satisfied classically (i.e. when
no entanglement and/or no hidden variables exist):

⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2 (1)

In the presence of quantum entanglement (in this case non-
locality as the particles are separated by a distance), this inequality
can be violated, and the upper bound for a quantum theory[46] is

⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2
√
2 (2)

Violations of the classical inequality have at this point been mea-
sured to very high precision in loophole-free ways,[47–54] and this
is a well-understood landmark in quantum science.
However, Bell-type inequalities have important limitations

when applied to many-body systems. Constructions only exist
for a subset of multipartite entangled states, and tend to require
an exponentially growing number of measurements.[1] The mea-
surements are also often sensitive to noise.[1] A closely related
approach is the use of “entanglement witnesses.”[1,55–59] These
quantities are generally functionals of the density matrix 𝜌 en-
coding a quantum state that allow for distinguishing a subset of
entangled states from separable states; see Figure 2 for an illus-
tration. Associated with the functional is an inequality, which, if
satisfied, indicates that the state of the system falls within that
subset of entangled states. If the inequality is not satisfied, the
system may be in a separable state or potentially another subset
of entangled states.
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Figure 1. Connections between Bell’s inequality measurements and scat-
tering experiments. a) In an optical Bell’s type experiment[19] the entan-
glement between photons is witnessed by making a series of measure-
ments of the polarizations of photon pairs. A combination of correlations
such as the CHSH witness[20] are then applied to determine if the pho-
tons are indeed entangled. b) In condensed matter systems entanglement
can likewise be witnessed using a combination of correlation functions
between components. Here we consider the example of two spins SA∕B
(which may be spatially separated) in a chain. The correlation between
their spin components can be measured using, for example, neutron scat-
tering. Incident neutrons in a prepared polarization spin state 𝛼 (= x, y, z)
scatter from the spins in a material transferring energy ℏ𝜔 = Ei − Ef and
momentum Q = ki − kf to the material where the scattered neutron state
is 𝛽. Fourier transforming the scattering cross section S(Q, 𝜔) for dif-
ferent polarizations allows the real space and time correlations between
spins ⟨SxASxB⟩, ⟨SxASyB⟩, ⟨SzASzB⟩ etc. to be reconstructed. Various entangle-
ment witnesses can then be applied. Other experimental techniques can
witness entanglement in a similar manner both in and out of equilibrium.

They key advantage of witnesses is that they enable inferring
knowledge about the entanglement of a system from partial
information about its state. This is extremely useful in the
context of macroscopic materials, which involve Avogadro’s
numbers of degrees of freedom. The challenge presenting itself
is finding appropriate quantum mechanical expectation values
accessible to experimental probes. It is particularly natural to
consider spectroscopic experiments, which directly measure
two-point correlation functions and allow immediate analogies
with Bell’s inequality experiments; see Figure 1b. However, a
wider range of observables have been proposed as witnesses
in the solid state, including magnetization,[60,61] spatial correla-
tions between two spins,[60–64] magnetic susceptibility,[63,65]

heat capacity,[66,67] static structure factors,[68–70] and dy-
namic susceptibilities.[39] Combinations of witnesses—as in
Figure 2b—may be used in protocols for identifying states of
interest.
This review focuses on a set of quantities that have been

applied to experimental condensed matter systems namely i) the
magnetic susceptibility entanglement witness 𝜒EW,

[63,65] ii) the
one-tangle entanglement witness 𝜏1,

[60,61,71] iii) the concurrence
(C) and two-tangle (𝜏2) entanglement witnesses,[60,61,71] iv) the
two-site quantum discordmeasure of quantum correlations,[72,73]

and v) the quantumFisher information entanglementwitness.[39]

Figure 2. Entanglement witnesses. a) Schematic picture of a generic
Hilbert space. There exists a set of separable states (i.e. states that are
not entangled) and a—typically larger—set of entangled states. It is pos-
sible to construct observables  whose (experimental) measurement al-
lows identifying if the system is in a subset of entangled states or not. The
subset is represented by the orange hatched area. These observables are
called entanglement witnesses. Figure inspired by ref. [1]. b) Here, two wit-
nesses 1 and 2 can witness entanglement in the subsets represented
by the orange and green hatched areas, respectively. If both witnesses in-
dicate entanglement, the state of the system is constrained to the over-
lapping region represented by the yellow shaded area. In general, by using
multiple distinct witnesses, it is possible to infer additional information
and, in principle, triangulate where in the Hilbert space the state lives.

These are summarized in Table 1, and will be discussed in de-
tail later.
Note that witnesses is not the only path to certifying the pres-

ence of entanglement in materials. Entanglement can also be in-
ferred by conventional data analysismethods for systems that can
bemodeled accurately by theory, as in Figure 3,[74] and in systems
that host specific entangled states with clear signatures, such as
from fractionalized excitations.[76–79] However, due to the reliance
on specific models, such approaches to demonstrating entangle-
ment are inherently much more limited in scope than witnesses.
In general, conventional analysis and entanglement witness anal-
ysis synergize and can be combined to provide additional insight.
We next briefly introduce important quantummaterial classes

where entanglement witness and quantum correlation functions
have already been applied, or are likely to be applied in the
near future. Quantummagnets, correlated electron systems, and
quantum fluids provide a wide range of important and exotic
quantum phases of matter.
Quantum magnets comprise arrays of coupled localized spin

degrees of freedom that realize cooperative quantum behavior.[80]

They are found in a wide array of solid state materials including
low-dimensional materials[81] and those with frustrated lattices,
including triangular, kagome, and pyrochlore motifs, enabling,
e.g., quantum spin liquids.[27,28] External stimuli (e.g., pressure,
magnetic fields) can be used to manipulate spin states in these

Adv. Quantum Technol. 2024, 2400196 2400196 (3 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Table 1. Table of entanglement and quantum correlation witnesses. These are described in depth in Section 3, and their application to materials outlined
in Section 4. The physical interpretation of different witnesses may be compared with Figure 4. Relevant experimental techniques (Section 4) are listed.
𝜒m denotes magnetic susceptibility, Cv denotes magnetic heat capacity, and S(Q) denotes the static spin structure factor, which may be probed using
neutrons. Spectroscopy refers to energy-resolved dynamic susceptibility probes using, for example, neutrons, photons, muons or electrons. Studies of
materials where the witnesses have been applied are given in Table 2.

Witness Key Formulae Physical Interpretation Experimental Probes

Susceptibility (𝜒EW) Equation (16) generalized spin-squeezing 𝜒m

One-tangle (𝜏1) Equation (26) one-site entanglement diffraction

Two-tangle (𝜏2) Equation (53) total pairwise entanglement S(Q)

Concurrence (C) Equations (47, 52) pairwise entanglement S(Q), Cv, 𝜒m

Quantum discord [Q(𝜌)] Equations (60, 105, 106) pairwise quantum correlations S(Q), Cv, 𝜒m

Quantum Fisher Information (QFI) Equations (108, 111) multi-partite entanglement spectroscopy

Quantum variance (QV) Equation (129) multi-partite entanglement spectroscopy

Skew information (SI) Equations (129, 130) multi-partite entanglement spectroscopy

Spatial quantum correlations Equation (131) quantum fluctuations spectroscopy

materials, potentially driving systems through entanglement
transitions and quantum phase transitions,[82] which are asso-
ciated with very high degrees of entanglement.[21,22] Quantum
magnets are actively being pursued as the basis of future quan-
tum technologies including sensors, quantum magnonics,[83]

topological quantum devices, and information storage and pro-
cessing. They also often represent the simplest realizations of
model systems, and can be emulated in quantum simulators
and computers.
(Strongly) correlated electron materials involve interactions

between charge, spin, and orbital degrees of freedom. This
important class of materials includes unconventional super-
conductors, multiferroics, spintronic materials, heavy fermion
materials,[84] and many other types of systems. Because of their
complexity, more complicated entanglement patterns may be ex-
pected than in quantum magnets, including entanglement be-
tween spin and charge sectors, or between different orbitals.
Overall, such materials are often challenging to model quantita-
tively, and much remains unknown about the structure of quan-
tum correlations within them. Of particular interest in these ma-
terials is the study of entanglement near quantum phase transi-
tions and out-of-equilibrium.
The quantum liquids helium-3 and helium-4 remain in liquid

states down to temperatures where their de Broglie wavelengths
become of order the atomic spacings and take on quantum prop-
erties such as superfluidity.[85] These cover a remarkable range of
quantumphases including topological states as a function ofmix-
ture, pressure, dimensional reduction/confinement, and temper-
ature. Entanglement is an important aspect of these states where,
e.g., superfluid droplets show area law entanglement,[86] and con-
fined helium in one-dimensional (1D) pores form highly en-
tangled Luttinger liquids.[87] The remarkable properties of these
states are seen in thermodynamic and transport properties as
well as from neutron scattering techniques.[88,89]

3. Theory of Entanglement and Witnesses

The goal of this section is to provide a mathematical introduction
to entanglement and to provide derivations for some experimen-
tally applicable entanglement witnesses, all in a notation tailored

Figure 3. Magnetic susceptibility 𝜒 as a function of the temperature of the
dilute, dipolar Ising magnet LiHo0.045Y0.0955F4. To theoretically reproduce
the experimentally measured susceptibility data at low temperatures it is
necessary to use a fully quantum mechanical modeling. Reproduced with
permission.[74] 2003, Springer-Nature. See also ref. [75] for a contempo-
rary perspective.

to condensed matter physicists. By collecting the derivations in
one place instead of tens of papers we hope to make the material
more accessible. To keep our focus and scope, we will use cer-
tain results from quantum information and quantum metrology
without proof, but state clearly when we do so.

3.1. Bipartite and Multipartite Entanglement

The most commonly studied form of entanglement is bipartite
entanglement; see Figure 4a,b. Here, bipartite refers not to a bi-
partite lattice, but to a splitting of a quantum system’s Hilbert
space  into two partitions, A and B. How one splits —the

Adv. Quantum Technol. 2024, 2400196 2400196 (4 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 4. Entangled states. The arrows represent entangling correlations between sites, and red vertical lines represent partitions of the system into
different regions. For simplicity of notation, in the following we assume the quantum state of the full system |Ψ⟩ is a pure state. However, these notions
generalize to mixed states as described in the text. a) A separable state, i.e. non-entangled state, for which |Ψ⟩ = |𝜓A⟩ ⊗ |𝜓B⟩. b) A typical bipartite
entangled state, for which |Ψ⟩ ≠ |𝜓A⟩ ⊗ |𝜓B⟩. c) The one-site reduced density matrix is obtained by keeping a single site in region A and tracing out all
degrees of freedom in the rest of the system. In spin-1∕2 systems, the entanglement between the single site and the system can be witnessed through
the one-tangle. d) The two-site reduced density matrix is obtained by isolating two sites in region A — which does not need to be contiguous — and
tracing out degrees of freedom in B, which contains all sites not in A. In spin-1∕2 systems, the pairwise entanglement between two sites separated by
a distance r can be witnessed through the concurrence. A related measure is the two-tangle, which is a witness of the total pairwise entanglement. e)
For multipartite entangled states it is possible to introduce additional partitions. Here, a state with at least tripartite entanglement is shown, for which|Ψ⟩ ≠ |𝜓A⟩ ⊗ |𝜓B⟩ ⊗ |𝜓C⟩. The strength of multipartite entanglement can be characterized by the entanglement depth, which can be witnessed using
the quantum Fisher information and related measures.

choice of the so-called entanglement cut—is, in principle, arbi-
trary and depends on which degrees of freedom one is inter-
ested in. Here we envision a cut in real space, but note that, e.g.,
momentum-space and inter-sublattice cuts have also attracted in-
terest. The state of the system can be described by a density ma-
trix 𝜌. Tracing over the degrees of freedom in B yields the re-
duced density matrix of A, 𝜌A = TrB [𝜌], and vice versa for 𝜌B. The
reduced density matrix contains all information about the sub-
system, and can thus be used for calculating expectation values⟨OA⟩ = Tr

[
𝜌AA

]
, where A is an operator with support on A.

The von Neumann entropy,

SvN = −Tr
[

𝜌A log 𝜌A
]

(3)

can be viewed as an extension of the Gibbs entropy in statisti-
cal mechanics, or the Shannon entropy in classical information
theory.[90,91] In fact, when expressed in the diagonal basis with
𝜆j denoting the jth eigenvalue of 𝜌A, SvN = −

∑
j 𝜆j log 𝜆j is equiv-

alent to the Shannon entropy. SvN = 0 only for pure states, i.e.
states that can be written 𝜌 = |𝜓⟩⟨𝜓|. The maximal value of SvN
is log(N), whereN is the dimension of theHilbert space, which is
reached for a maximally entangled state. (Conventionally, quan-
tum information theory uses base-2 logarithms, while condensed
matter theory tends to use the natural logarithm (ln).)
To make things more concrete, let us first consider the simple

example of a two-site system in a singlet ground state. The wave

function is

|𝜓⟩ = 1√
2

(|↑⟩A|↓⟩B − |↓⟩A|↑⟩B) (4)

where |𝜓⟩A∕B is the wave function of the degree of freedom la-
beled A or B. The basis for each site is {| ↑ .⟩, | ↓ .⟩}, consisting
of one-site eigenstates with well-defined spin projections onto
a suitable quantization axis (ẑ). The density matrix is given by
𝜌 = |𝜓⟩ ⟨𝜓|. The reduced density matrix of A becomes

𝜌A = TrB[𝜌] =
⟨
↑ |||B 𝜌

||| ↑⟩B
+
⟨
↓ |||B 𝜌

||| ↓⟩B
(5)

= 1
2

[||| ↑⟩A⟨↑ |||A + ||| ↓⟩A⟨↓ |||A] =
(

1
2
0

0 1
2

)
(6)

which has the form of a mixed state, and the entangle-
ment entropy becomes SvN = log 2 (the logarithm of a di-
agonal matrix A with nonzero elements A11, A22,… being
diag

(
logA11, logA22,…

)
), i.e. we have a maximally entangled

state. In contrast, the spin-polarized state ||| ↑⟩A||| ↑⟩B gives SvN = 0.
In both cases, the composite state of the two-site system is pure,
but the reduced state is only pure in the polarized case. The
mixedness of the reduced density matrix in the singlet case is
at the heart of entanglement.

Adv. Quantum Technol. 2024, 2400196 2400196 (5 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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We next turn to the general case of bipartite entanglement,
closely following ref. [1], as we also did in ref. [92]. A state
is considered entangled if it is not separable. Consider an ar-
bitrary state, which may be described with the density matrix
𝜌 =

∑
i pi|𝜙i⟩⟨𝜙i|, where 0 ≤ pi ≤ 1 is the probability of the pure

state |𝜙i⟩. We say that 𝜌 is separable if it can be expressed 𝜌 =∑
i pi 𝜌A

i ⊗ 𝜌B
i , where 𝜌A

i and 𝜌B
i are constructed from states in A

and B, respectively. A special case is the product states, for which
𝜌 = 𝜌A ⊗ 𝜌B. It is worth noting that identifying whether a given 𝜌

is separable or not, known as the separability problem, has been
shown to be NP hard in general.[1,93] (This means that, while the
runtime for verifying a solution grows as a polynomial of the size
of the Hilbert space, the runtime for any algorithm obtaining the
solution is expected to grow exponentially.)
An important generalization of the von Neumann entangle-

ment entropy, Equation (3), to a mixed state 𝜌 is known as the en-
tanglement of formation.[94,95] It quantifies the average amount
of entanglement that is necessary to generate the state. For a sys-
tem partitioned into parts A and B, it is defined

Eform(𝜌) = inf

{∑
i

piS
(

𝜌A
i

)}
(7)

where the infimum is taken over all possible decompositions of 𝜌

into pure states, i.e. all ensembles of states ||𝜓i⟩ and probabilities
pi such that 𝜌 =

∑
i pi ||𝜓i⟩ ⟨𝜓i

||. For each of the pure states 𝜌i =||𝜓i⟩ ⟨𝜓i
|| one performs a partition, obtaining the reduced density

matrix 𝜌A,i and calculates the von Neumann entropy. Eform is zero
only for separable states. We note that quantities of this type, de-
fined using an optimization operation, are common in quantum
information theory. While such constructions may appear far re-
moved from experimental measurements, the entanglement of
formation for pairwise entanglement can be witnessed using the
concurrence; see Section 3.4.
The above definitions for separable and bipartite entangled

states generalize to the case ofmultipartite entanglement;[1,96] see
Figure 4e. A state is said to be fully separable if it can be written
𝜌 =

∑
i pi𝜌

(1)
i ⊗ … 𝜌

(N)
i , where N is the number of degrees of free-

dom in, for example the number of sites or particles. States that
cannot be expressed this way possess some degree of entangle-
ment, which can be quantified in the language of m-separability
(or producibility). A pure state is said to bem- separable (m − sep)
if it can be expressed as

|||𝜙m−sep
⟩
= ⊗M

l=1|𝜙l⟩ (8)

where |𝜙l⟩ is a state ofNl ≤ m particles and
∑M

l=1 Nl = N. |𝜙m−sep⟩
has m-partite entanglement if it is m separable but not (m − 1)
separable. Similarly, a mixed state has m-partite entanglement if
it can be written

𝜌m−sep =
∑
l

pl
|||𝜙m−sep⟩⟨𝜙m−sep

||| (9)

3.2. Magnetic Susceptibility

In an important paper from 2005, Wiésniak et al.[65] demon-
strated that the magnetic susceptibility, a thermodynamic quan-

tity, provides sufficient information to witness entanglement in
certain spin systems. This approach has since been used in the
analysis of a substantial number of materials. The construction
is as follows. Consider a system of N spin-S spins held at ther-
mal equilibrium with temperature T . The zero-field isothermal
magnetic susceptibility along each of the orthogonal a = x, y, z
spin-space directions is given by

𝜒a =
g2𝜇2

B

kBT
Δ2
(
Ma

tot

)
(10)

where Ma
tot =

∑N
i=1 S

a
i is the total magnetization along â, g is the

Landé g-factor, 𝜇B the Bohr magneton, kB the Boltzmann con-
stant, and Δ2 (M) =

⟨
M2

⟩
− ⟨M⟩2 denotes variance.

A key observation is that, in a product state, the variance of
the magnetization equals the sum of variances of individual spin
operators. (This is analogous to the statement in probability the-
ory that the variance of a sum of independent random variables
equals the sum of variances of the individual variables.) Assum-
ing the g-factor is isotropic, the average �̄� =

(
𝜒x + 𝜒y + 𝜒z

)
∕3 for

a product state then satisfies

�̄� =
g2𝜇2

B

3kBT

[
Δ2
(
Mx

tot

)
+ Δ2

(
My

tot

)
+ Δ2

(
Mz

tot

)]
(11)

=
g2𝜇2

B

3kBT

N∑
i=1

[
Δ2
(
Sxi
)
+ Δ2

(
Syi
)
+ Δ2

(
Szi
)]

(12)

=
g2𝜇2

B

3kBT

N∑
i=1

[⟨Si ⋅ Si⟩ − ⟨Sxi ⟩2 − ⟨Syi ⟩2 − ⟨Szi ⟩2] (13)

≥ g2𝜇2
BNℏ2S

3kBT
(14)

since ⟨Si ⋅ Si⟩ = ℏ2S(S + 1) and
∑

a⟨Sai ⟩2 ≤ ℏ2S2. This generalizes
to a generic separable state 𝜌, which can be viewed as a con-
vex mixture (or weighted mean) of product states, each with
probability pn ≥ 0 (

∑
n pn = 1), such that the density matrix is

𝜌 =
∑

n pn ⊗N
i=1 𝜌i

n. (There always exists an ensemble of states for
which 𝜌 can be decomposed in this fashion.) The derivation pro-
ceeds as before, but due to the convexity, eq. (15) is replaced by[97]

�̄� ≥ g2𝜇2
B

3kBT

∑
n

pn

N∑
i=1

[
Δ2
(
Sxi
)
n
+ Δ2

(
Syi
)
n
+ Δ2

(
Szi
)
n

]
≥ g2𝜇2

BNℏ2S

3kBT
(15)

where Δ2
(
Sai
)
n
is the variance taken in state 𝜌n. It thus follows

that the system must be entangled if the entanglement witness
associated with the susceptibility, 𝜒EW, satisfies

𝜒EW ≡ �̄� <
g2𝜇2

BNℏ2S

3kBT
(16)

for the case in point. A less general, but physically transpar-
ent derivation of the same bound was obtained for dimerized
magnets.[63] We note that both derivations assume an isotropic
g-factor, which strongly constrains which classes of magnetic
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materials this witness is suitable for. Further, we note that experi-
mental artifacts like free spin impurities, sample diamagnetism,
etc. can influence the susceptibility and must be controlled or
modeled to obtain an accurate witness measurement. Finally,
we note that the bound can be understood as a generalized spin
squeezing inequality.[1,98]

3.3. One-Tangle

The following will use a notation matching ref. [99]. We con-
sider a system ofN spin-1∕2 degrees of freedom (or, equivalently,
qubits) and single out a single spin at site j0, placing it in region
A; see Figure 4c. Region B describes the rest of the system, such
that the many-body Hilbert space is given by  ⊗ . The basis
for the one-site Hilbert space is again {| ↑ .⟩, | ↓}. A pure state of
the system can be written

|𝜓⟩ = ∑
𝜈∈

|𝜈⟩ ⊗
∑
Γ∈

c𝜈Γ|Γ⟩ (17)

The probability for our spin to be in the state |𝜈⟩ is p𝜈 =∑
Γ
||c𝜈Γ

||2. The normalization condition ⟨𝜓|𝜓⟩ = 1 correctly im-
plies

∑
𝜈 p𝜈 = 1. The pure state |𝜓⟩ corresponds to the density

matrix

𝜌 = |𝜓⟩⟨𝜓| (18)

=
∑

𝜈1∈
||𝜈1⟩ ⊗

∑
Γ1∈

c𝜈1Γ1
||Γ1⟩ ∑

𝜈2∈
⟨𝜈2

|| ⊗
∑
Γ2∈

c∗
𝜈2Γ2

⟨Γ2|| (19)

The one-site reduced density matrix 𝜌(1) is obtained by tracing out
all degrees of freedom in , i.e.
𝜌(1) =

∑
Γ∈

⟨Γ|𝜓⟩⟨𝜓|Γ⟩ = ∑
𝜈1 ,𝜈2∈

|𝜈1⟩⟨𝜈2|∑
Γ∈

c𝜈1Γc
∗
𝜈2Γ

(20)

We may now use that a generic 2 × 2 matrix M can be decom-
posed in terms of the identity and Pauli matrices through

M =
∑

𝜇

a𝜇 𝜎 𝜇 , 𝜇 ∈ {0, x, y, z} (21)

where 𝜎0 = I and a𝜇 = Tr [𝜎 𝜇M] ∕2. a𝜇 ∈ ℝ if M is Hermitian,
otherwise a𝜇 ∈ ℂ in general. Since 𝜌(1) contains all information
about the subsystem , these traces can be interpreted as mea-
surements ⟨𝜎

𝜇

j0
⟩. It follows that

𝜌(1) =
⎛⎜⎜⎜⎝

1
2
+
⟨
Szj0

⟩ ⟨
Sxj0

⟩
− i
⟨
Syj0

⟩
⟨
Sxj0

⟩
+ i
⟨
Syj0

⟩
1
2
−
⟨
Szj0

⟩ ⎞⎟⎟⎟⎠ (22)

= 𝜎0

2
+
∑
a

⟨Saj0⟩𝜎a, a ∈ {x, y, z} (23)

where Saj = 𝜎a
j ∕2 is a spin-1∕2 operator.

The single-site von Neumann entanglement entropy is given
by S(1)vN = −Tr

[
𝜌(1) ln 𝜌(1)

]
. By using the Taylor series ln (1 + x) =

x − x2

2
+ x3

3
+… and retaining only the first (linear) term, we ob-

tain

S(1)vN ≈ −Tr
[

𝜌(1)
(

𝜌(1) − 1
)]

= 1 − Tr
[(

𝜌(1)
)2]

(24)

which is proportional to the linear entropy[100]

SL[𝜌
(1)] = d

d − 1

{
1 − Tr

[(
𝜌(1)

)2]}
(25)

where d is the dimension of 𝜌 (here, d = 2). This quantity is a
measure of mixedness in quantum states, here normalized to lie
in the range [0,1], with 0 for completely pure states, and 1 for com-
pletely mixed states. (Conversely, 𝛾 = Tr

[
𝜌2
]
is known as the pu-

rity.) The advantage of the linear entropy over the regular entan-
glement entropy is that it can be computed without diagonalizing
the reduced density matrix. The one-tangle[71,101] is now given by

𝜏1= SL
[

𝜌(1)
]
= 4det 𝜌(1) = 1 − 4

∑
𝜇

⟨Saj0⟩2 (26)

One should keep inmind that j0 is a single site. If it is fully classi-
cally ordered, i.e. ⟨Szj0⟩ = 1∕2, 𝜏1 vanishes, indicating a pure state.
If it is entirely quantum disordered, i.e. ⟨Saj0⟩ = 0, 𝜏1 = 1, indicat-
ing that our single site is maximally mixed with the rest of the
system (assuming nonzero interactions). In translation-invariant
systems, the expectation values at site j0 can be replaced with ap-
propriate averages throughout the system (taking ordering vec-
tors into account). Then 𝜏1 can be experimentally accessed, e.g.,
through measurements of Bragg peaks.
It is also important to remember that we assumed the state|𝜓⟩ of the entire system to be a pure state. Strictly speaking, this

construction is thus only valid at T = 0, although it is qualita-
tively useful also at low temperatures. It is possible to construct
a one-tangle also for mixed states,[101] however the resulting ex-
pressions involves an optimization over all possible pure state
decompositions, that has yet to be turned into a useful entangle-
ment witness.

3.4. Concurrence and Two-Tangle

The two-site reduced density matrix is obtained analogously. We
choose two spin-1∕2 degrees of freedom at sites i and j tomake up
regionA, and represent the rest of the system by B; see Figure 4d.
A variety of bases for the two-site Hilbert space have been con-
sidered in the literature,[99,102] but we will focus on the so-called
standard basis |𝜈⟩ ∈ {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩}. The reduced den-
sity matrix 𝜌

(2)
ij is again given by Equation (20), but is now a 4 × 4

matrix. Such matrices can be expressed

M =
∑

𝜇

∑
𝜈

1
4
(𝜎 𝜇 ⊗ 𝜎 𝜈)⟨𝜎 𝜇 𝜎 𝜈⟩ (27)

Relating the matrix elements to measurements of different op-
erators is straightforward, and the result in the general case can
be found in ref. [103]. In the following we will assume that parity
(or ℤ2) symmetry is present, i.e. that the magnetization along ẑ
has to stay constant or change in steps of 2. In other words, the
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Hamiltonian lacks terms such as SzS+ and magnetic fields along
x̂ or ŷ. Under this assumption one obtains the reduced density
matrix[60]

𝜌
(2)
ij =

⎛⎜⎜⎜⎜⎜⎝

a 0 0 c

0 x z 0

0 z∗ y 0

c∗ 0 0 b

⎞⎟⎟⎟⎟⎟⎠
(28)

where

a = 1
4
+Mz

ij + gzzij (29)

b = 1
4
−Mz

ij + gzzij (30)

x = 1
4
+ 𝛿Szij − gzzij (31)

y = 1
4
− 𝛿Szij − gzzij (32)

c = gxxij − gyyij − i
(
gxyij + gyxij

)
(33)

z = gxxij + gyyij + i
(
gxyij − gyxij

)
(34)

and where we have defined

g𝛼𝛽

ij =
⟨
S𝛼
i S

𝛽

j

⟩
= 1
4

⟨
𝜎 𝛼
i 𝜎

𝛽

j

⟩
(35)

Mz
ij =

1
2

(⟨Szi ⟩ + ⟨Szj ⟩) = 1
4

(⟨𝜎z
i ⟩ + ⟨𝜎z

j ⟩) (36)

𝛿Szij =
1
2

(⟨Szi ⟩ − ⟨Szj ⟩) = 1
4

(⟨𝜎z
i ⟩ − ⟨𝜎z

j ⟩) (37)

The presence of additional symmetries can constrain Equa-
tion (28) further. In particular, translational invariance enforces
𝛿Szij = 0 and thus x = y. If the Hamiltonian is real, for example

if there is no Dzyaloshinskii–Moriya interaction, gxyij = gyxij , and
z ∈ ℝ. In the presence of U(1) symmetry and diagonal interac-
tions, as in the XXZ model, gxxij = gyyij , g

xy
ij = 0, and c = 0.

Wootters,[95] extending work by Hill and Wootters,[104] proved
that the entanglement of formation, Equation (7), of a two-site
reduced density matrix in any mixed state satisfies

Eform(𝜌) = h

(
1 +

√
1 − C2(𝜌)

2

)
(38)

where h(x) = −x log x − (1 − x) log (1 − x). C is the concurrence,
which is defined as

C(𝜌) = max {0, 2𝜆max − Tr[R]} (39)

where 𝜆max is the largest eigenvalue of R =
√

𝜌
(2)
ij

̃
𝜌
(2)
ij , and

̃
𝜌
(2)
ij = (𝜎y ⊗ 𝜎y)

(
𝜌
(2)
ij

)∗
(𝜎y ⊗ 𝜎y) (40)

is the time-reversed copy of 𝜌
(2)
ij . (This is just the action of

the standard time-reversal operator for two spin-1∕2 degrees of
freedom.[105])

Both 𝜌
(2)
ij and ̃

𝜌
(2)
ij are positive semi-definite Hermitian matri-

ces (their eigenvalues represent probabilities), but 𝜌
(2)
ij

̃
𝜌
(2)
ij is gen-

erally non-Hermitian. We may use that the matrix square root√
𝜌
(2)
ij is also a positive semi-definite Hermitian matrix, write

𝜌
(2)
ij

̃
𝜌
(2)
ij =

√
𝜌
(2)
ij

√
𝜌
(2)
ij

̃
𝜌
(2)
ij and exploit that

√
𝜌
(2)
ij

√
𝜌
(2)
ij

̃
𝜌
(2)
ij has the

same eigenvalues as
√

𝜌
(2)
ij

̃
𝜌
(2)
ij

√
𝜌
(2)
ij , which is Hermitian. Then,

for all nonzero vectors v we have

v†
√

𝜌
(2)
ij

̃
𝜌
(2)
ij

√
𝜌
(2)
ij v =

(√
𝜌
(2)
ij v

)†
̃

𝜌
(2)
ij

(√
𝜌
(2)
ij v

)
≥ 0 (41)

guaranteeing that the eigenvalues of R are non-negative. Alterna-
tively, the eigenvalues of R can be obtained by taking square roots

of the eigenvalues of R2 = 𝜌
(2)
ij

̃
𝜌
(2)
ij .

Here we find that the eigenvalues of R are (in no particular
order)

𝜆1 =
|||√ab − |c|||| (42)

𝜆2 =
|||√ab + |c|||| = √

ab + |c| (43)

𝜆3 =
|||√xy − |z|||| (44)

𝜆4 =
|||√xy + |z|||| = √

xy + |z| (45)

We note that it is easy to miss the absolute value signs on c and
z if these quantities are not formally treated as complex through-
out. 𝜆2 ≥ 𝜆1 and 𝜆4 ≥ 𝜆3, so we have two candidates for 𝜆max to
consider for Equation (39). The constraint that the eigenvalues

of 𝜌
(2)
ij are non-negative implies

√
ab ≥ |c|, and √xy ≥ |z|, and

the concurrence becomes

C = 2max
{
0, |c| −√

xy, |z| −√
ab
}

(46)

We now expand this result out for some useful cases, following
ref. [60]. In the general parity-symmetric case,

C = 2max

{
0,

√(
gxxij − gyyij

)2
+
(
gxyij + gyxij

)2

−
√(1

4
− gzzij

)2
−
(

𝛿Szij

)2
,

√(
gxxij + gyyij

)2
+
(
gxyij − gyxij

)2
−
√(1

4
+ gzzij

)2
−
(
Mz

ij

)2}
(47)

Requiring translational invariance and a real Hamiltonian, this
simplifies to

C = 2max
{
0, |||gxxij − gyyij

||| − 1
4
+ gzzij
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|||gxxij + gyyij
||| −

√(1
4
+ gzzij

)2
−
(
Mz

ij

)2}
(48)

where g𝛼𝛽

ij only depends on the distance between i and j. In the
case of the isotropic S = 1∕2 Heisenberg spin model, this simpli-
fies further to

C = 2max

{
0, 2|||gzzij ||| −

√(1
4
+ gzzij

)2
−
(
Mz

ij

)2}
(49)

In the absence of order,

C = 2max
{
0, 2|||gzzij ||| − 1

4
− gzzij

}
(50)

If gzzij < 0,

C = 2max
{
0, −3gzzij − 1

4

}
(51)

which means the concurrence for antiferromagnetic Heisenberg
dimers (see Section 4.1) is given by

C = 2max
{
0,−⟨S0 ⋅ Sd1⟩ − 1

4

}
(52)

where ⟨S0 ⋅ Sd1⟩ is the intradimer spin-spin correlation function.
As Equation (38) shows, the entanglement of formation in-

creases monotonically with 0 ≤ C ≤ 1. Thus the concurrence is
a proper entanglement measure that can be experimentally ob-
tained through the measurement of appropriate spin correlation
functions and order parameters. Alternatively, for sufficiently
symmetric Hamiltonians, the concurrence can be expressed in
terms of other thermodynamic quantities, such as magnetic
susceptibility[106] and the internal energy.[107,108] Finally, one can
define the two-tangle as the square of all concurrences,

𝜏2 =
∑
i≠j

C2
ij (53)

(In the case of 1D translation-invariant systems this is com-
monly written 𝜏2 = 2

∑
r>0 C

2
r where r = ||j − i|| is the separation

between the sites.) It was conjectured[71] and later proved[101]

that 𝜏2 ≤ 𝜏1. This inequality reflects a limit to how strong pair-
wise entanglement can be in a system, a trade-off known as
monogamy of entanglement.[71,109] Interestingly, strongly corre-
lated ground states in condensed matter systems can be linked
tomonogamy.[101,110] The ratio 𝜏2∕𝜏1, sometimes called the entan-
glement ratio, has been used as an estimate for the fraction of the
total entanglement that is stored in pairwise entanglement at T =
0.[61,64] Due to monogamy, the concurrence generically decays
quickly with distance and number of neighbors.[7,61,64,99,111–114] It
is thus expected to be most useful for systems where the entan-
glement is encoded in strong short-range correlations, such as
dimerized magnets and spin clusters. In contrast, as discussed
in ref. [92] concurrence is much less powerful in quantum spin
liquids, and has been found to vanish for all pairs of spin sites in
the exactly solvable Kitaev spin liquid.[115]

3.5. Two-Site Quantum Discord

The certification of genuine quantum correlations that go beyond
entanglement is also of interest. The type of such quantum cor-
relations that has received the most attention is known as the
(bipartite) quantum discord.[72,116] We review the general formu-
lation of this quantity in Section 3.5.1 and then specialize to two-
site quantum discord (two-site QD) in Section 3.5.2. Analytical
expressions relating the quantum discord of XYZ spin systems
in the absence of order are given in Section 3.5.3. The important
special case of isotropicHeisenberg exchange is addressed explic-
itly.

3.5.1. General Formulation

To formulate the quantum discord, one considers two classically
equivalent ways of writing the mutual information between two
probability distributions. The quantum discord is then defined
as the difference between their quantum generalizations; see
Refs. [10, 117] for excellent reviews. Nonzero discord thus indi-
cates the inequivalence of two expressions that would be equal
in a classical state, and, accordingly, implies the presence of non-
classical correlations. We note that separable (i.e. non-entangled)
states can have finite discord, and that it has been shown that typ-
ical states in an arbitrary Hilbert space have nonzero quantum
discord.[118]

Here we will proceed directly to a suitable definition, follow-
ing Refs. [73, 119–122]. We consider a bipartition of a system de-
scribed by density matrix 𝜌 into two subsystems described by re-
duced density matrices 𝜌A = TrB [𝜌] and 𝜌B = TrA [𝜌], respectively.
The quantum mutual information is defined

I(𝜌) = S
(

𝜌A
)
+ S

(
𝜌B
)
− S(𝜌) (54)

= S
(

𝜌A
)
− S

(
𝜌|𝜌B

)
(55)

where S (𝜌) = −Tr
[

𝜌 log 𝜌
]
is the von Neumann entropy of 𝜌, and

where S
(

𝜌|𝜌B
)
= S (𝜌) − S

(
𝜌B
)
is a quantum generalization of

the conditional entropy. The quantum mutual information I (𝜌)
can be viewed as a measure of the total correlations between sub-
systems A and B, and is always non-negative. (Note also that I (𝜌)
is not an entanglement measure; a mixture of separable states is
not entangled but can have nonzero quantum mutual informa-
tion.)
Alternatively, the conditional entropy can be generalized us-

ing measurement operations performed only on B. Let {Bk} be
a set of 1D projection operators (each Bk projecting onto a sin-
gle outcome k). If measurement outcome k is obtained, the state
becomes

𝜌k =
1
pk

(
I ⊗ Bk

)
𝜌
(
I ⊗ Bk

)
(56)

where pk = Tr
[(
I ⊗ Bk

)
𝜌
(
I ⊗ Bk

)]
, and I is the identity operator

acting only on A. Then the conditional entropy can be expressed

S
(

𝜌|{Bk}
)
=
∑
k

pkS
(

𝜌k

)
(57)

Adv. Quantum Technol. 2024, 2400196 2400196 (9 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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in which case the quantum mutual information can be defined
using the alternative expression

J
(

𝜌|{Bk}
)
= S

(
𝜌A
)
− S

(
𝜌|{Bk}

)
(58)

Any difference between Equations (55) and (58) has to be due to
quantum effects on the correlation between A and B!
To make the definition independent of the specific choice of

measurement {Bk} one defines

C(𝜌) = sup
{Bk}

J
(

𝜌|{Bk}
)

(59)

which is a measure of the classical correlation between A and
B.[72,116] The supremum is taken over all possible choices of {Bk},
making the procedure and measure general. The quantum dis-
cord is then defined

Q(𝜌) = I(𝜌) − C(𝜌) (60)

and becomes a measure of genuine quantum correlations. The
discord is bounded from above by the entanglement entropy of
the measured subsystem, Q (𝜌) ≤ S

(
𝜌B
)
.[123]

3.5.2. Two-Site Formulation

In general, the optimization operation in Equation (59) is com-
plicated and often needs to be carried out numerically. However,
analytical progress can be made by restricting the discussion to
quantum discord between only two spin-1/2 sites in amany-body
system, and by considering sufficiently symmetric Hamiltoni-
ans.We first obtain the two-site reduced densitymatrix by tracing
out other parts of the system, and assume a real-valued Hamilto-
nian, in which case we obtain from Equation (28)

𝜌
(2)
ij =

⎛⎜⎜⎜⎜⎜⎜⎝

a 0 0 c

0 x z 0

0 z y 0

c 0 0 b

⎞⎟⎟⎟⎟⎟⎟⎠
(61)

Now let us decompose this two-site system into parts A and B
that each describe a single site. In other words, 𝜌A and 𝜌B will
be one-site reduced density matrices, and 𝜌 = 𝜌

(2)
ij . It is conve-

nient to rewrite 𝜌
(2)
ij using the representation Equation (27). One

obtains[73]

𝜌
(2)
ij =

1
4

[
I ⊗ I +

3∑
i=1

ci𝜎i ⊗ 𝜎i + c4I ⊗ 𝜎3 + c5𝜎3 ⊗ I

]
(62)

where

c1 = 2z + 2c (63)

c2 = 2z − 2c (64)

c3 = a + b − x − y (65)

c4 = a − b − x + y (66)

c5 = a − b + x − y (67)

(The coefficient of I ⊗ I satisfies c0 = a + b + x + y = 1.) The
eigenvalues are then

𝜆1 =
1
4

[
1 + c3 +

√(
c1 − c2

)2 + (
c4 + c5

)2]
(68)

𝜆2 =
1
4

[
1 + c3 −

√(
c1 − c2

)2 + (
c4 + c5

)2]
(69)

𝜆3 =
1
4

[
1 − c3 +

√(
c1 + c2

)2 + (
c4 − c5

)2]
(70)

𝜆4 =
1
4

[
1 − c3 −

√(
c1 + c2

)2 + (
c4 − c5

)2]
(71)

We also obtain

𝜌A = TrB[𝜌] =

⟨
↑
|||||B 𝜌

(2)
ij | ↑

⟩
B

+

⟨
↓
|||||B 𝜌

(2)
ij | ↓

⟩
B

(72)

= 1
2

(
1 + c5 0
0 1 − c5

)
(73)

𝜌B = 1
2

(
1 + c4 0
0 1 − c4

)
(74)

which have the eigenvalues

rA1 =
1 + c5
2

, rA2 =
1 − c5
2

(75)

rB1 =
1 + c4
2

, rB2 =
1 − c4
2

(76)

leading to the one-site entanglement entropies

S
(

𝜌A
)
= −

(
rA1 log r

A
1 + rA2 log r

A
2

)
(77)

S
(

𝜌B
)
= −

(
rB1 log r

B
1 + rB2 log r

B
2

)
(78)

We also have that S
(

𝜌
(2)
ij

)
= −

∑4
i=1 𝜆i log 𝜆i, with 𝜆i as given in

Equations (68)–(71). These entropies are sufficient to calculate
the quantum mutual information (54).
Turning to the classical correlations, we next need to

parametrize our measurements {Bk}. Let

Πk =
|||k⟩⟨k|||, k ∈ {0, 1} (79)

be a projector acting on subsystem B along the basis element |k⟩.
Then any vonNeumannmeasurement operator can be expressed
as

Bk = VΠkV
† (80)

where V is a general SU(2) matrix,

V = tI + iy⃗ ⋅ �⃗� (81)

Adv. Quantum Technol. 2024, 2400196 2400196 (10 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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and where t ∈ ℝ, y⃗ =
(
y1, y2, y3

)
∈ ℝ3 and t2 + y⃗ ⋅ y⃗ = 1. (This im-

plies t ∈ [−1,+1], yi ∈ [−1,+1], i ∈ {1, 2, 3}.) As stated before, af-
ter a measurement on B the state 𝜌

(2)
ij changes into an ensemble

{𝜌k, pk}; see Equation (56). It is convenient to write

pk𝜌k =
(
I ⊗ Bk

)
𝜌
(2)
ij

(
I ⊗ Bk

)
(82)

=
[
I ⊗

(
VΠkV

†)]𝜌
(2)
ij

[
I ⊗

(
VΠkV

†)] (83)

This product can be straightforwardly evaluated using themixed-
product property of the Kronecker product for square matrices
A, B, C,D,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD (84)

and the useful relations

V†𝜎1V =
(
t2 + y21 − y22 − y23

)
𝜎1 + 2

(
ty3 + y1y2

)
𝜎2

+ 2
(
−ty2 + y1y3

)
𝜎3 (85)

V†𝜎2V = 2
(
−ty3 + y1y2

)
𝜎1 +

(
t2 + y22 − y21 − y23

)
𝜎2

+ 2
(
ty1 + y2y3

)
𝜎3 (86)

V†𝜎3V = 2
(
ty2 + y1y3

)
𝜎1 + 2

(
−ty1 + y2y3

)
𝜎2

+
(
t2 + y23 − y21 − y22

)
𝜎3 (87)

and Π0𝜎3Π0 = Π0, Π1𝜎3Π1 = −Π1, Πk𝜎1Πk = Πk𝜎2Πk = 0 ∀k,
as well as V†IV = I and ΠkIΠk = Πk. We will also define

z1 = 2
(
−ty2 + y1y3

)
(88)

z2 = 2
(
ty1 + y2y3

)
(89)

z3 = t2 + y23 − y21 − y22 (90)

One obtains

p0𝜌0 =
1
4

(
I + c1z1𝜎1 + c2z2𝜎2 + c3z3𝜎3

+c4z3I + c5𝜎3
)

⊗ VΠ0V
† (91)

p1𝜌1 =
1
4

(
I − c1z1𝜎1 − c2z2𝜎2 − c3z3𝜎3

−c4z3I + c5𝜎3
)

⊗ VΠ1V
† (92)

Using Tr [A ⊗ B] = Tr [A] Tr [B], and Tr
[
VΠ0V

†] = Tr
[
VΠ1V

†] =
t2 + y21 + y22 + y23 = 1, one finds

p0 = Tr
[
p0𝜌0

]
= 1
2

(
1 + c4z3

)
(93)

p1 = Tr
[
p1𝜌1

]
= 1
2

(
1 − c4z3

)
(94)

as the Pauli matrices are traceless and Tr [I] = 2. After collecting
terms, the density matrices can be expressed

𝜌0 =
1
2

{
I + 1

1 + c4z3

[
c1z1𝜎1 + c2z2𝜎2 +

(
c3z3 + c5

)
𝜎3
]}

⊗
(
VΠ0V

†) (95)

𝜌1 =
1
2

{
I + 1

1 − c4z3

[
−c1z1𝜎1 − c2z2𝜎2 −

(
c3z3 − c5

)
𝜎3
]}

⊗
(
VΠ1V

†) (96)

3.5.3. Expressions for XYZ and Heisenberg Spin Systems

We now specialize to the case c4 = c5 = 0 relevant to spin sys-
tems in the absence of order (i.e. Mz

ij = 𝛿Szij = 0). Then we have
p0 = p1 = 1∕2 and obtain that both 𝜌0 and 𝜌1 have eigenval-

ues
{
0, 0, 1+𝜃

2
, 1−𝜃

2

}
with 𝜃 =

√||c1z1||2 + ||c2z2||2 + ||c3z3||2. We

get S
(

𝜌0
)
= S

(
𝜌1
)
where

S
(

𝜌0
)
= = −1 − 𝜃

2
log 1 − 𝜃

2
− 1 + 𝜃

2
log 1 + 𝜃

2
(97)

and the conditional entropy with respect to {Bk}, Equation (57),
becomes

S
(

𝜌
(2)
ij |{Bk}

)
= −1 − 𝜃

2
log 1 − 𝜃

2

− 1 + 𝜃

2
log 1 + 𝜃

2
(98)

It is convenient to work with binary base logarithms, for which
the single-site entropy (77) simplifies to S

(
𝜌A
)
= log2 2 = 1 in

units of bits. The quantummutual information, calculated using
the alternative definition Equation (58), is

J
(

𝜌
(2)
ij |{Bk}

)
= 1 − 𝜃

2
log2 (1 − 𝜃)

+ 1 + 𝜃

2
log2 (1 + 𝜃) (99)

Now define

cmax
ij = max

{||c1||, ||c2||, ||c3||} (100)

Then

0 ≤ 𝜃 =
√||c1z1||2 + ||c2z2||2 + ||c3z3||2

≤
√(

cmax
ij

)2(||z1||2 + ||z2||2 + ||z3||2) = cmax
ij (101)

since z21 + z22 + z23 = 1. This implies that the optimization to be
done to evaluate the classical correlations simply corresponds to

sup
{Bk}

𝜃 = sup
V

𝜃 = cmax
ij (102)
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In other words, the classical correlations become (Equation (59))

C
(

𝜌
(2)
ij

)
=
1 − cmax

ij

2
log2

(
1 − cmax

ij

)
+
1 + cmax

ij

2
log2

(
1 + cmax

ij

)
(103)

Under our assumption of c4 = c5 = 0, c1 = 4gxxij , c2 = 4gyyij , and
c3 = 4gzzij , such that the quantum discord in Equation (60) is en-
tirely expressible in terms of two-site spin-spin correlations. Ex-
plicitly, for XYZ spin systems,

QXYZ
ij

(
𝜌
(2)
ij

)
= I

(
𝜌
(2)
ij

)
− C

(
𝜌
(2)
ij

)
(104)

=
(1
4
− gxxij − gyyij − gzzij

)
log2

(
1 − 4gxxij − 4gyyij − 4gzzij

)
+
(1
4
− gxxij + gyyij + gzzij

)
log2

(
1 − 4gxxij + 4gyyij + 4gzzij

)
+
(1
4
+ gxxij − gyyij + gzzij

)
log2

(
1 + 4gxxij − 4gyyij + 4gzzij

)
+
(1
4
+ gxxij + gyyij − gzzij

)
log2

(
1 + 4gxxij + 4gyyij − 4gzzij

)
−
1 − cmax

ij

2
log2

(
1 − cmax

ij

)
−
1 + cmax

ij

2
log2

(
1 + cmax

ij

)
(105)

with cmax
ij = max

{|||gxxij ||| |||gyyij ||| |||gzzij |||}.
The case of spin systems with isotropic Heisenberg interac-

tions, including spin chains and dimers, is of particular exper-
imental relevance. By symmetry, gxxij = gyyij = gzzij . (Note that this
holds for arbitrary range interactions.) Defining Gij = 4gzzij ,

QHeis
ij

(𝜌) = 1
4

[(
1 − 3Gij

)
log2

(
1 − 3Gij

)
+3
(
1 +Gij

)
log2

(
1 +Gij

)]
− 1
2

[(
1 + |Gij|) log2 (1 + |Gij|)

+
(
1 − |Gij|) log2 (1 − |Gij|)] (106)

as stated in, for example, ref. [124].

3.6. Quantum Fisher Information

We introduce the quantum Fisher information in Section 3.6.1
and derive corresponding entanglement bounds in Section 3.6.2.
The Hauke et al.[39] relation is proven in Section 3.6.3 using lin-
ear response theory results derived in Appendix A. Section 3.6.4
describes a generalization to quantum variance and skew infor-
mation.

3.6.1. Introduction

The quantum Fisher information (QFI) is a witness of multi-
partite entanglement, and was shown to be measurable using
spectroscopic techniques in a seminal paper by Hauke et al.[39]

However, the concept has its origin in quantum metrology, and
specifically the quantum theory of phase estimation.[125–127] For
reviews of this field we recommend Refs. [128, 129]. The QFI
can also be viewed as a distance metric on the space of quantum
states[127] and plays an important role in quantum information
geometry,[130] topics beyond the scope of this article.
One of the most celebrated quantum metrology results is the

quantum Cramér–Rao bound for the maximal precision with
which one can measure a parameter 𝜈,

(Δ𝜈)2 ≥ 1
MF[𝜌;] (107)

where (Δ𝜈)2 denotes the variance of 𝜈, M is the number of in-
dependent measurements and the quantity F [𝜌;] is the QFI
in a state 𝜌 and for an operator  coupling to 𝜈. (A relevant ex-
ample is the case where 𝜈 represents a magnetic field, and 
a spin operator.) As we will see later, higher QFI corresponds
to stronger entanglement, in the sense of larger entanglement
depths. Equation (107) thus shows that highly entangled states
are required to reach the highest possible levels of measurement
precision; a larger entanglement depth enabling higher preci-
sion. Conversely, the precision of a measurement can imply the
presence of specific entangled states.
The QFI related to an operator  and a generic state described

by the density matrix 𝜌 is given by

F[𝜌;] = 2
∑
𝜆,𝜆′

(
p𝜆 − p𝜆′

)2
p𝜆 + p𝜆′

||⟨𝜆||𝜆′⟩||2 (108)

where |𝜆⟩ and |𝜆′⟩ are eigenstates of 𝜌 with eigenvalues p𝜆 and
p𝜆′ , respectively. This notation emphasizes that the eigenvalues
can be interpreted as probabilities. Note that the sum excludes
terms with p𝜆 + p𝜆′ = 0. For the case of a pure state the expres-
sion simplifies to F = 4 (Δ)2, where (Δ)2 = ⟨2

⟩
− ⟨⟩2 is

the variance.
In the following, we will assume a system of N sites or parti-

cles, and that  is a sum of local, bounded Hermitian operators
j, i.e.,

 =
N∑
j=1

j (109)

Concretely, in spectroscopic scattering experiments,  often
represents the momentum space Fourier transform of on-site
operators. In the context of spin-polarized inelastic neutron scat-
tering, for example, can represent S𝜇

k = N−1∕2∑
i e

ik⋅ri S𝜇

i , where
k is the wave vector and ri is the position of site i. In non-polarized
neutron scattering, a linear combination of the components 𝜇 is
considered, weighted by appropriate polarization factors. In the
context of nonresonant inelastic xray scattering,  can represent
nk = N−1∕2∑

i e
ik⋅ri ni, where ni is the electron density operator.

We also assume a thermal state 𝜌 =
∑

l pl
|||𝜆⟩⟨𝜆

|||, where the |𝜆⟩
Adv. Quantum Technol. 2024, 2400196 2400196 (12 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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are energy eigenstates with occupation probabilities given by the
Boltzmann distribution,

p𝜆 = 1
Z
exp

(
−

E𝜆

kBT

)
(110)

where E𝜆 is the energy eigenvalue, T is the temperature, kB is
the Boltzmann constant, and Z the partition function.
Under these assumptions, Hauke et al.[39] showed that the QFI

density can be expressed

f[𝜌;; k] = 4
𝜋 ∫

∞

0
d(ℏ𝜔) tanh

(
ℏ𝜔

2kBT

)
𝜒 ′′(k, ℏ𝜔, T) (111)

where 𝜒 ′′ is the imaginary part of the dynamic susceptibility in
state 𝜌 associated with the operator , and k is a possible wave
vector index. (It is often absorbed into the definition of , but
is convenient to keep explicit in the context of scattering experi-
ments.)Here f ≡ F∕N is called theQFI density, which is the ap-
propriate quantity in Equation (111) if the dynamic susceptibility
is treated as an intensive quantity (i.e., normalized per site, as is
common in condensed matter). The importance of this formula
is that f can be obtained using spectroscopic techniques such as
inelastic neutron scattering. As long as 𝜒 ′′ can be obtained in ab-
solute units[131] and the above assumptions are met, it provides
an experimentally accessible way to bound the entanglement in
the system. We note that the requirement of normalization to ab-
solute units amounts to a restriction on what experimental meth-
ods are practical for determining the QFI.

3.6.2. Entanglement Bounds

Bounds for the QFI in separable and fully entangled states were
obtained in ref. [132]. Bounds for m-separable states were first
obtained in Refs. [96, 133]. These bounds rely on the fact that the
QFI is convex in its density matrix argument, meaning that for
mixed states 𝜌 = p𝜌1 + (1 − p) 𝜌2 and p ∈ [0, 1],

F[𝜌] ≤ pF
[

𝜌1
]
+ (1 − p)F

[
𝜌2
]

(112)

This property will not be proven here. It is most straight-
forwardly derived in a more general discussion of the Fisher
information[128] by making use of the result that the classical
Fisher information is convex.[134] This property implies that a
mixed m-separable state (Equation (9)) satisfies

F
[

𝜌m−sep
] ≤ ∑

l

plF
[|||𝜙ml−sep⟩⟨𝜙ml−sep

|||] (113)

≤ ∑
l

pl4 (Δ)2||||||𝜙ml−sep

⟩ (114)

where the variance of  is evaluated in the state |||𝜙ml−sep
⟩
, which

is of the form in Equation (8). Since  is linear,

4 (Δ)2||||||𝜙ml−sep

⟩ =
M∑
l=1

(Δ)2||||𝜙l⟩ ≤
M∑
l=1

[
𝜆
(l)
max − 𝜆

(l)
min

]2
(115)

where 𝜆
(l)
max and 𝜆

(l)
min are the largest and smallest eigenvalues of

the operator acting on the sites involved in ||𝜙l⟩, i.e.,(l) = ⊗
Nl

i=1i,
where i is the operator acting on a single site. (The integers
M and Nl come from the definition in Equation (9)). We are in-
terested in the case when the same operator is measured on all
sites, for which 𝜆

(l)
max = Nl𝜆max and 𝜆

(l)
min = Nl𝜆min, where 𝜆max and

𝜆min are the largest and smallest eigenvalues ofi. This gives the
bound

max
𝜌m−sep

F
[

𝜌m−sep
] ≤ (

𝜆max − 𝜆min

)2
max
{Nl}

M∑
l=1

N2
l (116)

where the optimization on the right hand side is over all possible
partitions satisfying

∑M
l=1 Nl = N. This is achieved by making the

Nl as large as possible. In particular, for m-separable states that
have Nl ≤ m,

max
{Nl}

M∑
l=1

N2
l = sm2 + r2, s = ⌊N

m
⌋, r = N − sm (117)

where ⌊x⌋ is the “floor function” that equals the largest integer
smaller than or equal to x.
This means that the QFI in anm-separable state is bounded by

F
[

𝜌m−sep
] ≤ (

sm2 + r2
)(

𝜆max − 𝜆min

)2
(118)

Conversely, if

F[𝜌] >
(
sm2 + r2

)(
𝜆max − 𝜆min

)2
(119)

the systemmust be at least (m + 1)-partite entangled. The special
case of a separable state corresponds tom = 1, for which the QFI
satisfies the bound

F
[

𝜌sep
] ≤ N

(
𝜆max − 𝜆min

)2
(120)

The bound for a maximally entangled state corresponds to m =
N, for which

F
[

𝜌N−ent
] ≤ N2

(
𝜆max − 𝜆min

)2
(121)

This result is known in quantum metrology as the Heisen-
berg limit.
The bound in Equation (119) simplifies if m is a divisor of N.

For finite systems this can be checked explicitly. For experimental
condensedmatter systemswe can typically assume thatN is large
and indeterminate, such that all m ≪ N are divisors. Under this
assumption, r = 0 and in terms of the QFI density f = F∕N,

f[𝜌] > m
(

𝜆max − 𝜆min

)2
(122)

indicates the presence of at least (m + 1)-partite entanglement.
We note that it is sometimes assumed that the operator i has
a unit spectrum in order to simplify this formula to f [𝜌] > m.
However, when applied to a specific experiment, the eigenval-
ues of the measured operators can have other ranges. The sup-
plemental material of ref. [135] discusses the application to in-
elastic neutron scattering on spin-S magnetic systems. For un-
polarized scattering, i.e. without spin-polarization resolution, the
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bound becomes f > 12Sm2. Alternatively, this can be expressed
as nQFI > m in terms of the normalized QFI[92] defined as
nQFI = f∕(12S2).

3.6.3. Proof of the Hauke et al. Relation

From the definition of the hyperbolic tangent,

tanh(x) = ex − e−x

ex + e−x
(123)

it is easy to derive the identity

tanh
(x − y

2

)
= e−y − e−x

e−y + e−x
(124)

Thus, using Equation (110),

tanh
(
E𝜆′ − E𝜆

2kBT

)
= e

− E𝜆
kBT − e

−
E𝜆′
kBT

e
− E𝜆

kBT + e
−

E𝜆′
kBT

≡ p𝜆 − p𝜆′

p𝜆 + p𝜆′
(125)

Inserting the Källen–Lehmann representation for 𝜒 ′′, Equa-
tion (A28) (see Appendix A for a derivation), into Equation (111)
yields

f = 4
𝜋

∑
𝜆,𝜆′

|⟨𝜆||𝜆⟩|2(p𝜆 − p𝜆′

)
× ∫

∞

0
d(ℏ𝜔) tanh

(
ℏ𝜔

2kBT

)
𝜋 𝛿
(

ℏ𝜔 − E𝜆′ + E𝜆

)
(126)

Using that tanh(x) is odd in x and that the delta function is even
in its argument, one obtains after relabeling 𝜆 ↔ 𝜆′ in one of the
sums,

f = 2
∑
𝜆,𝜆′

|⟨𝜆||𝜆⟩|2(p𝜆 − p𝜆′

)
× ∫

∞

−∞
d(ℏ𝜔) tanh

(
ℏ𝜔

2kBT

)
𝛿
(

ℏ𝜔 − E𝜆′ + E𝜆

)
(127)

= 2
∑
𝜆,𝜆′

|⟨𝜆||𝜆⟩|2(p𝜆 − p𝜆′

)
tanh

(
E𝜆′ − E𝜆

2kBT

)
(128)

Then, using the identity given in Equation (125), we recover
Equation (108), thus proving the validity of Equation (111).

3.6.4. Generalization to Quantum Variance and Skew Information

Equation (111) can be generalized to a family of quantum coher-
ence measures[110]

I[, k; h, 𝜌] = 1
𝜋 ∫

∞

0
d(𝜔ℏ) h

(
ℏ𝜔

2kBT

)
𝜒 ′′(k, 𝜔, T) (129)

where h(x) is a monotone quantum filter function that satisfies
h(x) ∼ x for x → 0 and h(x) → const as x → ∞.[136–138] Physically,
this represents a high-pass filter for frequencies ℏ𝜔 ≫ kBT . For
the QFI IQFI = f, h(x) = 4 tanh(x∕2). As described in ref. [110],

this generalization gives experimental access to additional quan-
tities that have been studied in quantum information theory. In
particular, the quantum variance IQV

[139,140] is obtained for the
filter function h(x) = (x∕2), where (x) = coth x − 1∕x is the
Langevin function, and the Wigner–Yanase–Dyson skew infor-
mation I𝛼

[141,142] is obtained for

h𝛼(x) =
cosh (x∕2) − cosh [(𝛼 − 1∕2)x]

sinh (x∕2)
(130)

and 0 < 𝛼 < 1 is a parameter introduced by Dyson, with 𝛼 =
1∕2 originally proposed by Wigner and Yanase. The Fourier
transform of Equation (129) from momentum space into real
space defines a family of spatial two-site quantum correlation
functions,[110]

C[Oi,Oj; h, 𝜌] = 1
𝜋 ∫

∞

0
d(ℏ𝜔) h(𝛽 ℏ𝜔)𝜒 ′′

Oi,Oj
(𝜔) (131)

that will not be covered in detail in this review. Here i and j are
site indices, and 𝜒 ′′

Oi,Oj
(𝜔) is the imaginary part of the two-site

dynamical susceptibility.
The inequality chain IQV ≤ I1∕2 ≤ f∕4 ≤ 2I1∕2 ≤ 3IQV

[139,143]

guarantees that the quantum variance and skew information can
be used to witness multipartite entanglement, just like the QFI.
From the experimental perspective, once one has measured 𝜒 ′′,
Equation (129) is equally straightforward to evaluate for all quan-
tumfilter functions. However, theoretical methodsmay favor cer-
tain quantities. For example, the quantum variance and skew in-
formation aremore accessible than QFI to quantumMonte Carlo
methods,[110,139,140] as they can be computed using alternative ex-
pressions that do not involve numerically difficult analytical con-
tinuations of the dynamical correlation function from imaginary
to real time.

3.7. Summary

The preceding pages have introduced a variety of witnesses of en-
tanglement and quantum correlations as well as their derivations
and expressions in specific cases. Table 1 provides an overview of
the respective witnesses, with references to key equations and ap-
plicable experimental techniques for quick reference.

4. Applications in Condensed Matter

In this section, we review applications of entanglement witnesses
to experimental data for condensed matter systems. We group
these applications into four rough categories based on the types
of systems that have been explored in the literature: systems
that realize dimer states, quantum critical spin chains, candidate
quantum spin liquidmaterials, and systems that deviate from the
prior three categories. We note that there is an even more exten-
sive literature on theoretical analyses of entanglement witnesses
in various spin models that is outside the scope of this article.

4.1. Dimer Systems and Spin Clusters

One of the simplest wave functions that possess entanglement
is the singlet state formed by two quantum degrees of freedom,

Adv. Quantum Technol. 2024, 2400196 2400196 (14 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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each with internal Hilbert space dimension two, such that its
total angular momentum is zero.This state can be realized in
few-body systems, such as two photons with entanglement
between their polarizations, or two fermions with entangle-
ment between their spin degree of freedom. In many-body
systems, the objects can, for example, be spin-1∕2 local magnetic
moments in a quantum magnet, exciton states in a molecu-
lar aggregate,[144] or qubits in a quantum computer. We will
focus on the magnetic case, for which the state is naturally
expressed

|𝜓⟩ = 1√
2

(|↑⟩1|↓⟩2 − |↓⟩1|↑⟩2) (132)

where |𝜓⟩i is the wave function of the ith degree of freedom. |↑⟩
and |↓⟩ represent eigenstates with well-defined spin projections
onto a suitable quantization axis. Crucially, this state cannot be
expressed as a sum of product states, i.e. it is non-separable. In-
deed, it is one of the four Bell states or EPR pairs, i.e. maximally
entangled states of two qubits.[145] Concretely, this state can be
realized, for example, in two-spin systems coupled by an antifer-
romagnetic Heisenberg Hamiltonian,H = JS1 ⋅ S2 with J > 0.
Such spin singlets show up in several quantum magnetic

contexts[81]—including random singlets in strongly disordered
systems,[146–149] and as coherent superpositions in resonating va-
lence bond (RVB) states[26,27]—but the simplest realizations are
found in dimerized magnets. It is useful to think of these sys-
tems as hosting singlets locked in place at pairs of sites, known
as dimers, producing an overall product state with such singlets
distributed throughout the lattice. Consider the bond alternating
Heisenberg chain

H = J
∑
j

(
S2j ⋅ S2j+1 + 𝛼S2j+1 ⋅ S2j+2

)
(133)

where J > 0, Sj is the spin-1/2 operator at site j, and 𝛼 =
J′∕J is a bond alternation parameter, such that the exchange
alternates between J and J′. For 𝛼 = 1, the usual, uniform
Heisenberg antiferromagnetic chain is recovered. For |𝛼| ≪ 1
the Hamiltonian describes a system of weakly coupled dimers.
In such cases, one expects strong entanglement between the
two sites making up the dimer, and only weak interdimer
entanglement.
Remarkably, there exists a wide range of materials with

weakly coupled magnetic chains, whose magnetic proper-
ties can be described by Equation (133).[150–153] Copper ni-
trate [Cu(NO3)22.5H2O, in neutron studies often deuterated to
Cu(NO3)22.5D2O] with 𝛼 ≈ 0.25 is considered a model realiza-
tion of the Hamiltonian, and has received much experimental
attention.[154–159] In 2006, Brukner, Vedral, and Zeilinger[63] rean-
alyzed previously published inelastic neutron scattering[157] and
magnetic susceptibility[154] data from an entanglement perspec-
tive. Assuming a system at thermal equilibrium described by
Equation (133) with spin-isotropic coupling and vanishing mag-
netic order, and that spin-spin correlations beyond nearest neigh-
bors are negligible compared to the intradimer spin-spin corre-
lation

⟨
S0 ⋅ Sd1

⟩
, they derived the following expression for the

Figure 5. Intradimer correlation ⟨S0 ⋅ Sd⟩ in copper nitrate. Entangle-

ment is witnessed when
||||⟨S0 ⋅ Sd1⟩|||| > 1∕4.[156,158] Reproduced with

permission.[63] 2006, American Physical Society.

zero-field magnetic susceptibility (averaged over three orthogo-
nal directions),

𝜒 =
g2𝜇2

BNℏ2

kBT

[1
4
+ 1
3

⟨
S0 ⋅ Sd1

⟩]
(134)

where g is the g factor, and 𝜇B is the Bohrmagneton. (This follows
from Equation (10).) Since |||⟨S0 ⋅ Sd1⟩||| ≤ |||S0||| |||Sd1 ||| ≤ 1∕4 for any
separable state, and since the intradimer correlations are antifer-
romagnetic, one obtains the inequality

𝜒 ≥ 1
6

g2𝜇2
BNℏ2

kBT
(135)

Violations of this inequality indicates the system is in a non-
separable, i.e. entangled, state, in agreement with Equation (16).
Brukner et al. found such violations at temperatures below 5K,[63]

indicating an entangled low-temperature phase. Their comple-
mentary analysis of neutron scattering data is shown in Figure 5.
By direct inspection, the intradimer spin-spin correlation exceeds
the maximal classical value below Tc ≈5.6K. Since this is a spin-
isotropic dimer system, the concurrence can be expressed (Equa-
tion (52))

C = 2max
{
0,−

⟨
S0 ⋅ Sd1

⟩
− 1
4

}
(136)

which follows the temperature dependence of
⟨
S0 ⋅ Sd1

⟩
. It wit-

nesses the presence of entanglement within the dimers up to Tc.
The careful reader will note that the intradimer correlation ap-
pears to exceeds themaximal value in an isolated spin-1/2 singlet,
namely S(S + 1) = 0.75, at low temperatures. However, these val-
ues are consistent within the experimental error bars: at 0.3K,⟨
S0 ⋅ Sd1

⟩
= 0.9(2).[157] In general, the extraction of spatial cor-

relation functions is sensitive to normalization and background
subtraction procedures.[160]

The initial works by Wiésniak et al.[65] and Brukner et al.[63]

inspired many additional experimental characterizations of
the entanglement in copper nitrate, including witnesses
based on the magnetic susceptibility at finite magnetic
fields,[161] and heat capacity.[67] In addition, the two-site
quantum discord was determined.[162,163] Susceptibility wit-
nesses and concurrence (in some experiments evaluated from
heat capacity data) were also applied to several other low-
dimensional and molecular dimer magnet compounds, with
both S = 1∕2 and higher-S magnetic moments, including
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Na2Cu5Si4O14,
[106] metal carboxylates,[164] KNaMSi4O10 (M =

Mn, Fe, or Cu),[165] Fe2(𝜇2 − oxo) − (C3H4N2)6(C2O4)2,
[166] nitro-

syl iron complexes,[124] NH4CuPo4 ⋅H2O,
[167] and copper acetate

C8H16Cu2O10.
[168] Rappoport et al.[169] witnessed entanglement

using the magnetic susceptibility in pyroborate MgMnB2O5,
hosting a Griffiths phase with S = 5∕2 dimers, and warwickite
MgTiOBO3, hosting an S = 1∕2 random singlet phase. They
found the witness can certify the presence of entanglement in
both systems.
Two-site quantum discord was witnessed in copper acetates

and nitrosyl iron complexes.[124,162] Concurrence and two-site dis-
cord between spatially separated sites (220 Å to 250 Å apart) were
witnessed using magnetization measurements in the chain mo-
tifs of Sr14Cu24O41 (the structure of which features both spin-
ladder and chain subsystems).[170] See also ref. [171] for further
analysis of the mediators of these quantum correlations.
Finally, entanglement has also been witnessed in the nan-

otubular system Na2V3O7,
[172] which consists of S = 1∕2 ring

clusters, and the (Cr7Ni)2 supramolecular dimer system.[173–175]

The latter system is made of linked antiferromagnetic rings,
where each ring realizes a S = 1∕2 ground state that is robust to
applied magnetic fields and weaker inter-ring interactions. They
have therefore been proposed as molecular qubits, that could
be used as building blocks for quantum computation[176–178]

and simulation[178,179] platforms. The entanglement has been ex-
perimentally probed in complexes with two rings, i.e. dimers.
This was initially done using the magnetic susceptibility,[173]

thus probing entanglement in the thermal state. Later, the con-
currence in “eigenstates” was probed using inelastic neutron
scattering[174] by using the magnetic field to prepare specific, fac-
torized ground states, which is rarely possible in other condensed
matter systems.

4.2. Critical Quantum Spin Chains

One of the most paradigmatic models in magnetism and many-
body quantum physics is the Heisenberg spin chain

H = J
∑
j

Sj ⋅ Sj+1 (137)

originally introduced by Heisenberg in 1928.[180] (Besides its fun-
damental importance, it also has potential applications in quan-
tum communication.[181,182]) We will focus on the antiferromag-
netic case, where J > 0. In the general case, Sj represents a spin-S
operator. The physics of the model turn out to depend crucially
on the value of S[183–186]: In the case of integer S, the excitation
spectrum is gapped and the system can host topological edge
states, whereas the half-integer case corresponds to a critical sys-
tem with gapless excitations. The S = 1∕2 chain hosts fractional
excitations known as spinons,[187] each carrying spin 1∕2, which
should be contrasted with the usual magnon (or spin-wave) exci-
tations which carry spin 1.
As far as we are aware, entanglement has yet to be experi-

mentally witnessed in systems described by Equation (137) with
S > 1∕2. However, theoretical predictions exist for S = 1[188,189]

and S ≥ 5∕2.[92,190] We will thus focus on the quantum spin
chain with S = 1∕2 in this section. A natural guess for its

ground state is the Néel state consisting of alternating up
and down spins, |… ↑↓↑↓↑↓ … ⟩. However, the Néel state is
actually not an eigenstate of the Hamiltonian![186] Instead,
the actual ground state is a more complicated state first ob-
tained by Bethe[191] and Hulthén[192]: a macroscopic singlet
with overall spin of zero entangling all sites. Its entanglement
content has been characterized theoretically in a large number
of ways.[7,12] It being a critical state, conformal field theory
predicts that the entanglement entropy between a finite subset
and the remainder of the system scales logarithmically with the
size of the subset.[21,193,194] It is also associated with substan-
tial multipartite entanglement,[22,70] and short-range pairwise
entanglement.[64,108,112,195]

The presence of entanglement can be inferred from observing
signatures of the ground state, such as scattering continua due
to the presence of spinons.[76,78,196–201] This is a model-dependent
approach that relies on us having a good theoretical understand-
ing of the ground state. It thus cannot be generalized to all sys-
tems of interest. However, the very fact that we have a han-
dle on the ground state makes these systems excellent testing
grounds for entanglement witnesses, allowing for contrasting be-
tween different entanglement measurements. Witnesses based
on magnetic susceptibility were applied to Cu(thiazole)2Cl2, a
copper based polymer system,[202] and an organic radical molec-
ular chain,[203] indicating entanglement up to 12 K and 28 K, re-
spectively.
A new chapter opened up after the seminal 2016 paper

by Hauke et al.[39], showing that multipartite entanglement
could be witnessed and the entanglement depth inferred
via the quantum Fisher information calculated from dy-
namical susceptibilities. The first experimental work in this
direction was a 2020 study by Mathew et al.[204] on a poly-
crystalline sample of the S = 1∕2 Heisenberg spin chain
[Cu(𝜇 − C2O4)(4 − aminopyridine)2(H2O)]n, summarized in
Figure 6. They obtained a temperature scaling of the QFI that
is consistent with theoretical expectations for the Heisenberg
spin chain, thereby demonstrating the viability of the approach.
However, since they did not obtain scattering in absolute units,
it is unclear what degree of multipartite entanglement was ac-
tually witnessed in [Cu(𝜇 − C2O4)(4 − aminopyridine)2(H2O)]n.
(The inequality Equation (122) that bounds the entan-
glement depth requires a quantitative determination of
the QFI.)
KCuF3, Figure 7a, is among the most well-studied realiza-

tions of the isotropic S = 1∕2 Heisenberg antiferromagnetic
chain.[76,92,196–198,206–212] It can be obtained in large single crys-
tals suitable to inelastic neutron scattering, and features robust
enough intrachain exchange coupling (J ≈ 34meV) that the scat-
tering continuum remains at room temperature. The system or-
ders magnetically at low temperatures, below TN = 39K, due to
weak interchain coupling (J⟂ ≈ −1.6K). However, such effects af-
fect only the low-energy scattering, with high-energy scattering
reflecting the universality of the Heisenberg chain.[197] The scat-
tering intensity, and thus the dynamical spin structure factor, was
obtained in absolute units as shown in Figure 7b,c. The entangle-
ment properties of KCuF3 were investigated experimentally in
ref. [92, 190], and found to closely agree with finite-temperature
DMRG simulations (Figure 7d,e). Concurrence indicates short-
range pairwise entanglement. Most interestingy, the QFI was
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Figure 6. [Cu(𝜇 − C2O4)(4 − aminopyridine)2(H2O)]n. a–d) Inelastic neutron scattering results for a polycrystalline sample at several temperatures.
Black circles represent 𝜒 ′′ (𝜔) (left axis) integrated over a range of momentum transfers around the antiferromagnetic momentum. Red solid lines
indicate a theoretical fit. Blue solid lines represent the QFI integrand (right axis). The shaded area under this curve determines the QFI. e) Temperature-
variation of the QFI. Since 𝜒 ′′ (and thus the QFI) was obtained in arbitrary units, the entanglement depth was not probed directly in this experiment.
The temperature scaling is consistent with theoretical expectations for the Heisenberg antiferromagnetic chain (red line). f) Schematic phase diagram
for the Heisenberg antiferromagnetic chain in the presence of an applied magnetic fieldH. Panels from Figures 4 and 5 of Mathew et al.,[204] reproduced
under the CC BY 4.0 license.[205] Copyright 2020, G. Mathew et al., published by American Physical Society.

found to witness substantial entanglement depths; see Figure 7f.
At the lowest measured temperature of 6 K, at least quadpar-
tite entanglement was witnessed, meaning that the thermal state
features entanglement between at least four spins. (We stress
that, since the entanglement bounds take the form of inequal-
ities, QFI can only witness a minimal entanglement depth. In
other words, QFI can certify the presence of a certain entangle-
ment depth, but never its absence.) This number is comparable
with entanglement depths probed in atomic spin chains in opti-
cal lattices.[213,214] KCuF3 also features at least bipartite entangle-
ment up to at least 150K.
It should be noted that the spin isotropy in KCuF3 and similar

compounds substantially simplifies the data analysis.[160] For
spin-anisotropic compounds, it is necessary to take polariza-

tion factor effects into account, either by spin-polarization-
resolved experiments or through theoretical modeling. The latter
approach was taken in a study on Cs2CoCl4,

[135,215] a com-
pound that can be described as a spin-1∕2 transverse-field XXZ
chain,[216,217] with the Hamiltonian

H =
∑
j

[
J
(
Sxj S

x
j+1 + Syj S

y
j+1 + ΔSzj S

z
j+1

)
+ hxS

x
j

]
(138)

where Δ is a parameter controlling the anisotropy, and hx is a
magnetic field. Cs2CoCl4 is in a regime with J > 0 and |Δ| < 1,
where the model has two quantum critical points[218]: i) hx = 0,
in the same universality class as the isotropic Heisenberg chain
and with central charge c = 1, and ii) hx = hc ≈ 1.6J, which is
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Figure 7. The spin-1∕2 Heisenberg antiferromagnetic chain compound KCuF3. a) The crystal structure features chains of Cu ions. Owing to the orbital
order, the interchain exchange J⟂ = −1.6meV is much weaker than the intrachain coupling J = 34meV, making the magnetism largely 1D. b–e) Measured
and DMRG-simulated inelastic neutron scattering spectra at selected temperatures. f) Normalized quantum Fisher information as a function of tem-
perature, calculated at the antiferromagnetic momentum k = 𝜋. Values from experiment (red line) and DMRG (blue line) closely agree throughout the
entire temperature range. At least quadpartite entanglement is witnessed at the lowest temperatures, and at least bipartite entanglement is witnessed
up to 150 K. The algebraic Bethe ansatz predictions with and without experimental broadening are shown in light and dark green, respectively. Also
shown are estimated values for the S = 1 chain[188] (orange line) and for S = 5∕2 (purple line). In the integer-S case, the Haldane spin gap produces
a plateau at low temperatures. The QFI at any finite temperature decays as S increases, reflecting a quantum-to-classical crossover. Reproduced with
permission.[92,190] 2021–2023, American Physical Society.

Figure 8. The spin-1/2 transverse-field XXZ chain Cs2CoCl4. a–c) Experimental and d–f) DMRG-simulated inelastic neutron scattering spectra and g–i)
QFI integrands. The agreement is excellent at weak and intermediate fields, with deviations seen above hc ≈ 2.1 T due to weak interchain couplings
not accounted for in the theoretical 1D model. j–l) Entanglement properties. The bottom panel (l) shows the QFI f. For f > 3 (dashed line), at least
bipartite entanglement is witnessed. For f > 6, at least tripartite entanglement is witnessed. The cyan curve represents the experimental data, subject
to the experimental polarization factor (PF). It is in good agreement with the purple DMRG line, for which the DMRG data was convoluted with the
same polarization factor. In general, polarization factors and resolution effects tend to suppress the QFI. Here, because the DMRG calculation can be
done without applying the polarization factor (black diamonds), it is possible to correct the experimental data (yellow squares), and to witness a higher
entanglement depth. The top panel (j) shows the theoretically calculated von Neumann entanglement entropy, and the middle panel (k) shows the one-
and two-tangle. Adapted with permission.[135,215] 2021-2023, American Physical Society.

in the Ising universality class and has central charge c = 1∕2.
For 0 < hx < hc, the field induces a new source of fluctuations
and a so-called spin-flop magnetic order with an excitation gap.
For hx > hc the 1D model becomes spin-polarized, entering a
product state. In addition there exists a factoring field, hf < hc,
where the system also assumes a product state in the form of
a classical spin-flop state. The entanglement of the system can

thus be controlled by changing the strength of the magnetic
field. Its pairwise entanglement also changes qualitatively at
hf , in what is known as an entanglement transition.[61,219–221]

Figure 8 summarizes the study experimentally characterizing
the entanglement in Cs2CoCl4. In particular, we note that the
QFI witnesses entanglement at low fields, but does not capture
the entanglement at hc. In general, at such transitions there
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is no inelastic spectral weight available for witnessing the en-
tanglement using the dynamical spin susceptibility, indicating
the need for additional experimentally accessible entanglement
witnesses.
Given sufficient momentum resolution, it is also possible to

experimentally extract spatial quantum correlation functions that
go beyond witnesses of pairwise entanglement and two-site dis-
cord. This has been done for KCuF3. In ref. [212], the dynamical
spin structure factor S(k, 𝜔) measured with neutrons was Fourier
transformed into real space and time, yielding the so-called Van
Hove correlation function

G(r, t) = ⟨Szi (0)Szi+r(t)⟩ (139)

whose imaginary part can be expressed as a commutator,
Im

[
G(r, t)

]
∝
[
Szi (0), S

z
i+r(t)

]
, and is an indicator of quantum co-

herence between spins at two different sites. Notably, this quan-
tity reveals a “light-cone” limiting the information transfer rate
and spread of correlations. This type of speed limit generically
occurs in quantum lattice systems with local interactions due
to Lieb–Robinson bounds,[222–224] and was first experimentally
demonstrated in a cold atom system.[225]

In ref. [110] it was shown how quantum correlation
functions—defined as the difference between two classically
equivalent correlation functions—can be extracted from inelas-
tic scattering by taking the spatial Fourier transform over a gen-
eralization of the QFI integral. By introducing a quantum filter
function, the quantum Fisher information matrix,[226] quantum
covariance,[140,227] and skew information matrix[141] can be dis-
cussed on equal footing as described in Section 3.6.4. These spa-
tial quantum correlation functions were found to decay with a
characteristic length scale, the quantum coherence length[227] in
agreement with numerical and theoretical results.[140,227,228]

4.3. Toward Quantum Spin Liquids

A highly promising application for entanglement witnesses cur-
rently available in neutron scattering is in the search for quan-
tum spin liquids. These elusive states are topologically ordered,
fundamentally quantum states of matter characterized by a
lack of magnetic order even at zero temperature and nonlo-
cal entanglement.[27,28,230] However, unambiguously identifying
their presence in materials is a longstanding challenge, compli-
cated by the fact that disorder effects can mimic the proposed
signatures of quantum spin liquids.[231] ref. [92] proposed a di-
agnosis protocol based on entanglement witnesses to discrimi-
nate between genuine quantum spin liquid candidates and other
types of disorder. The protocol is to look for materials with i) sub-
stantial 𝜏1, to avoid states that have weak quantum correlations
or are strongly magnetically ordered, ii) vanishing 𝜏2, as quan-
tum spin liquids distribute the entanglement between all sites,
making pairwise entanglement between any two sites weak due
to monogamy effects, and iii) finite nQFI. All three conditions
being met would strongly indicate long-range entanglement. It
is important to note that the three witnesses involved in the pro-
tocol are all based on local observables, and thus cannot directly
probe the nonlocal entanglement inherent to topological order.
Nevertheless, derivatives of the QFI from local operators have

theoretically been shown to be capable of detecting topological
quantum phase transitions.[232–234]

The protocol has been applied to the triangular lattice antifer-
romagnet KYbSe2

[229]; see Figure 9. Thismaterial is part of a fam-
ily of delafossite materials in which magnetic Yb3+ ions form 2D
triangular lattice networks with antiferromagnetic nearest- and
next-nearest neighbor interactions J1 and J2. For J2∕J1 ≲ 0.06, a
noncollinear 120◦ magnetic order with spins pointing in or out
of triangles is realized. However, for J2∕J1 ≳ 0.06 theory predicts
a quantum spin liquid phase. KYbSe2, with J2∕J1 ≈ 0.044(5),[235]

is very close to the critical point at J2∕J1 ≈ 0.06. Experimentally,
a one-tangle 𝜏1 = 0.85(2) and vanishing two-tangle is obtained.
Based on the inelastic neutron spectra, the QFI at the K point is
extracted, indicating at least quadpartite entanglement at the low-
est temperatures. Such high QFI is due to the proximity to the
quantum critical point. Although KYbSe2 is on the “wrong” side
of the critical point, it is within the quantum critical fan emanat-
ing from it at finite temperature. The cousin material NaYbSe2
is expected to have higher J2∕J1 than does KYbSe2, and has been
argued to fall within the quantum spin liquid phase.[236] Experi-
mentally probing its entanglement would be helpful for settling
this point.
YbZnGaO4 is another candidate quantum spin liquid mate-

rial featuring a triangular lattice of antiferromagnetically inter-
acting Yb3+ ions. It is a close relative of YbMnGaO4, which was
initially looked at as a very promising spin liquid candidate, but
found to be very susceptible to site disorder.[238] The situation in
YbZnGaO4 is at present less clear.

[237,239] Partial entanglement in-
formation on the system has been extracted from muon spin re-
laxation (𝜇SR) by Pratt et al.[237,240]; see Figure 10. It was argued
that, since the 2D spin diffusion rate has a clear quantum-to-
classical crossover as a function of temperature, its inverse pro-
vides a mean-free path that Pratt et al. interpret as an estimate
for the entanglement depth. As far as we are aware, this is not a
rigorously defined quantum correlation. Here, we instead want
to highlight that they also obtained quantum Fisher information
from the diffusive spectral density measured by the muon probe
in Figure 10, showing the potential for measuring QFI with dif-
ferent experimental techniques.Wewill return to this point when
discussing future directions for the field.

4.4. Other Systems

In addition to the above magnetic systems, we note an in-
elastic neutron study of the two-leg ladder S = 1∕2 antiferro-
magnet C9H18N2CuBr4.

[241] This material has a critical pressure
Pc 1.0GPa pressure above which the Néel-ordered phase breaks
down,[242] and may host unconventional states. QFI was used to
witness at least bipartite entanglement at a pressure of 1.05GPa
up to at least 1.1K.[241]

Experimental QFI results were also recently reported for two
heavy fermion compounds: CeCu5.9Au0.1

[243] and Ce3Pd20Si6.
[244]

In both cases, spin-sector QFI obtained from inelastic neutron
scattering indicates multipartite entanglement. Ce3Pd20Si6 was
tuned to a quantum phase transition using an applied magnetic
field, where a significant entanglement depth was found.[244]

These studies provide promising results in the application of wit-
nesses to correlated electrons.
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Figure 9. The triangular lattice antiferromagnet KYbSe2. a) Phase diagram of the J1–J2 model on the triangular lattice. KYbSe2 exists close to a quantum
critical point that marks a transition form a magnetically ordered state to a quantum spin liquid. The proximity to a quantum critical point promotes
quantum fluctuations. b–d) Inelastic neutron scattering spectra from KYbSe2 at temperatures T = 0.3, 1.0, and 2.0 K. e) Normalized quantum Fisher
information, evaluated at the ordering vector K. At 0.3 K, at least four-partite entanglement is witnessed, showing that the ground state is strongly
entangled. f) Only the on-site spin-spin correlations exceed the classical bound 1∕4. Further-range spin-spin correlations and the two-tangle do not
witness quantumness or entanglement. This behavior is expected due to monogamy. Reproduced with permission.[229] 2024, Springer Nature.

Figure 10. Entanglement properties of the triangular lattice antiferromag-
net YbZnGaO4 from muon spin relaxation. Comparison of 2D spin dif-
fusion rate D2D a), entanglement length 𝜉E = aJ∕(hD2D) b), and QFI c).
Reproduced with permission.[237] 2022, American Physical Society.

5. Broader Perspective and Future Directions

In this section, we outline some of the frontiers of the field. The
past sections show that witnesses already have been applied to
a wide assortment of materials, but there is no reason to stop
here. Indeed, as pointed out by Brukner et al.[63], even reanaly-
sis of data from past experiments is likely to reveal entanglement
and other quantum correlations in a much broader range of sys-
tems. Until now, many efforts have focused on types of systems
for which it is theoretically motivated to look for entanglement.
In the future, one can imagine the converse: experimentally wit-
nessing significant quantum correlations in a new material may

immediately reveal the need for quantum-mechanical modeling.
For this to become a commonplace scenario, it will be necessary
to consider a range of experimental techniques and observables,
such that we can probe general quantummaterials. Since no sin-
gle witness can certify entanglement in all possible states, or be
measured using every technique, it is worthwhile to consider new
witnesses, and other ways or contexts for entanglement certifica-
tion.

5.1. Electronic Systems and Other Spectroscopies

It is striking that almost all of the experimental works cited in
the preceding sections involve materials that have been treated
as spin systems. The reason is largely that entanglement wit-
nesses originated in quantum information theory, in the con-
text of qubits, which are two-level systems. Although there is a
growing quantum information scientific interest in “qudits” with
higher d-dimensional local Hilbert spaces due to their techno-
logical advantages,[247,248] developing suitable witnesses is math-
ematically challenging. Thus, the quantum information progress
has mainly mapped onto spin-1∕2 systems, and much less to
S > 1∕2 spins and electrons with both charge and spin degrees of
freedom. Nevertheless, electrons are the building blocks of quan-
tum materials, and worth studying more closely. It is also clear
that electronic condensed matter systems can be entangled in
ways pure spin systems cannot,[7] including in charge and par-
ticle channels.
Currently, the most promising witness for electronic systems

is the quantum Fisher information. As we discussed earlier, the
construction by Hauke et al.[39] shows that the QFI remains a
witness of multipartite entanglement as long as it is evaluated
for a dynamical susceptibility associated with a bounded Her-
mitian local operator, be it spin, charge density, or otherwise.
In ref. [245, 246] we demonstrated theoretically that observing
multipartite spin-channel entanglement in the Fermi–Hubbard
chain is possible using inelastic neutron scattering and realistic
energy resolution; see Figure 11. Bipartite entanglement can be
witnessed even at very weak interactions u, and at least tripartite
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Figure 11. Calculated normalized quantum Fisher information in the
half-filled Hubbard chain with hopping energy t̃ and Hubbard repulsion
strengthU. The spin-1∕2 antiferromagnetic Heisenberg chain is recovered
in the strong-coupling limit u = U∕t̃ → ∞. Here, the dynamical spin struc-
ture factor S(k, 𝜔) was computed using DMRG, and used to evaluate the
nQFI at the antiferromagnetic momentum k = 𝜋. a) With fixed realistic en-
ergy resolution 𝜂 it is possible to witness at least bipartite entanglement
(light shaded region) even at weak interactions, and at least tripartite en-
tanglement (white region) at intermediate interaction strengths. b) The
impact of the energy resolution 𝜂, here chosen to depend on the system
size L. Adapted with permission.[245,246] 2022-2023, American Physical So-
ciety.

entanglement can be witnessed at intermediate repulsion. Re-
cently, theoretical QFI results have also been reported for Kondo
lattice models relevant to quantum critical strange metals,
finding multipartite entanglement near the Kondo destruction
quantum critical point.[243,244]

Future directions includemeasuring theQFI in the charge sec-
tor, which is possible using spectroscopies that probe the dynam-
ical charge structure factor, such as non-resonant inelastic x-ray
scattering (NRIXS)[249] and momentum-resolved electron energy
loss spectroscopy (M-EELS).[250] However, NRIXS has the draw-
back of coupling to the entire charge density, including core elec-
trons, and is unlikely to witness entanglement outside of special
cases where one can isolate the scattering from specific bands.M-
EELS is more promising in this regard, as it probes the physics
near the Fermi energy, which is typically where the bands of in-
terest are situated. Resonant inelastic x-ray scattering (RIXS)[251]

can also be used for witnessing entanglement in both the spin
and charge sectors. However, the RIXS matrix element is quite
complicated, which means detailed modeling may be required
to rigorously extract dynamical susceptibilities. An approach for
this is discussed in ref. [252], and tested on the iridate dimer sys-
tem Ba3CeIr2O9. Although entanglement between the Ir orbitals
has yet to be witnessed using this approach, simulations suggest
it can be achieved with polarization analysis or by optimizing the
choice of incident energy and momentum transfer. A recently
proposed protocol[253] goes beyond the Hauke et al. construction,
connecting single-particle Green’s functions to multipartite en-
tanglement, which could enable entanglement detection using
scanning tunneling microscopy and angle-resolved photoemis-
sion spectroscopy (ARPES).

5.2. Novel Witnesses and Correlation Functions

As the previous section argues, there are clear paths toward
broadly applying QFI (and related quantum coherence-based
measures) to electronic systems and higher-S spin systems. The
witnessing of pairwise entanglement presents further theoreti-
cal challenges. It involves constructing a two-site reduced den-
sity matrix (which is larger than in the S = 1∕2 case), and relat-
ing its elements to experimentally accessible quantities, which,
with current techniques, largely implies one- and two-site correla-
tion functions of local operators. Recent work expressing the two-
site density matrix for Hubbard systems in one- and two-particle
Green’s functions[254] may serve as a starting point for work
in this direction for electronic systems. Efforts have also been
made to generalizing the concurrence to S > 1∕2 systems and,
more generally, systems with higher-dimensional local Hilbert
spaces.[255–258] However, it is an open question whether simple
expressions can be obtained for condensed matter systems of ex-
perimental interest.
Another intriguing open question is whether experimental

techniques can be developed to probe correlation functions be-
yond the one-and two point functions we have discussed so
far. If possible, it could open up paths to measuring quanti-
ties generalizing the one- (𝜏1) and two-tangles (𝜏2) discussed in
this review into, for example, three-[71,259–262] and n-tangles.[263,264]

These were introduced in quantum information to diagnose and
understand the patterns of entanglement in systems of n > 2
qubits, and could potentially also help capture the entangle-
ment structure of clusters of spins within large crystals. Alter-
natively, one can consider relaxing the condition that the corre-
lation functions probe local operators. Entanglement witnessing
using cross-correlations of electrical currents has been discussed
for devices,[265,266] and could potentially also be probed optically
in materials. Another recently discussed[267] frontier is entangle-
ment witnesses for unbounded operators, such as the collective
momentum and position of phonon excitations in, for example,
quantum paraelectrics. Witnessing the entanglement of such de-
grees of freedom necessitates a different approach than QFI, for
which entanglement bounds were obtained for bounded opera-
tors in Section 3.6.2. Overall, there are many avenues open for
further work into extending existing witnesses to new classes of
systems, constructing newwitnesses, and developing experimen-
tal techniques.

5.3. Beyond Equilibrium

There has been tremendous progress in our understanding
of quantum dynamics and nonequilibrium quantum phe-
nomena over the last decades.[268–270] In particular, it is now
understood that thermalization processes in closed many-body
systems are linked to quantum chaos and the dynamics of the
entanglement entropy, which can be understood as a gener-
alization of the entropy familiar from thermodynamics and
statistical mechanics.[269–272] Typical systems, equipped with
eigenstates obeying entanglement entropy volume laws, are
believed to equilibrate according to the eigenstate thermaliza-
tion hypothesis.[272–277] However, there appear to exist special
quantum systems that can escape thermalization, including
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Figure 12. Left: a proposed method to probe light-driven entanglement in quantum materials. The system is driven out of equilibrium by a pump
laser, and time-resolved resonant inelastic x-ray scattering (trRIXS) is used to probe the collective excitations. From the trRIXS response function,
the nonequilibrium dynamical structure factor is recovered, and then entanglement is witnessed using a transient quantum Fisher information. This
approach is inherently different from the thermal equilibrium QFI discussed elsewhere in this review, and the reader is referred to ref. [291] for detailed
derivations. Right: a) Evolution of the nonequilibrium dynamical spin structure factor S(q = 𝜋∕6, 𝜔, t) for a 1D extended Hubbard model relevant to
cuprate chain systems. b) Spectral distribution. c) Time-dependence of a “snapshot” QFI (blue solid line), calculated from S(q, 𝜔, t) as if it was an
equilibrium spectrum, and of the exact QFI (black dashed line). d) Time-dependence of a self-consistently corrected QFI (red solid line), and of the exact
QFI (black dashed line). This self-consistent calculation includes effects due to higher-order time derivatives, and better captures the exact result. Panels
from Figures 1 and 4 of ref. [291], reproduced under the CC BY 4.0 license.[205] Copyright 2023, J. Hales et al., published by Springer Nature.

integrable systems, many-body localized (MBL) systems,[270]

quantum many-body scars,[278] and certain classes of periodi-
cally driven systems.[279] On the experimental side, there has
been significant advances in the control of cold atom[280] and
condensed matter systems,[281,282] as well as in time-resolved
spectroscopic techniques. Stepping away from thermal equi-
librium has allowed ultrafast control of material properties,[283]

access to otherwise hidden or metastable phases, and the real-
ization of novel, fundamentally nonequilibrium phases, such as
time crystals[284,285] and new topological phases.[279]

All these aspects suggest that probing entanglement in quan-
tum materials as a function of time is a worthwhile direction.
While it is not possible to probe the entanglement entropy di-
rectly in condensed matter, unlike cold atom systems,[272,286] the
quantum Fisher information again appears promising. However,
the construction of Hauke et al.[39] does not immediately gen-
eralize to the out-of-equilibrium case. It is clear that QFI cal-
culated from eigenstates can detect entanglement dynamics in
the Ising chain after a quantum quench (i.e. a sudden change of
an applied magnetic field),[287] in systems with quantum many-
body scars[288,289] and correlated fermionic systems.[290] In spe-
cial cases,[287] it turns out to be possible to define a generalized
fluctuation-dissipation theorem and rewrite the QFI as an inte-
gral over a generalized susceptibility, but this does not extend to
generic systems. A better approach is to instead carefully relate
QFI to time-dependent response functions that can be probed
experimentally by time-resolved spectroscopy. There have been
recent proposals to use time-resolved resonant xray scattering
(trRIXS);[291,292] see Figure 12, but, to the best of our knowledge,
experimental tests await. It is also interesting to note that, in
cases where it is possible to reverse the time-evolution, such as in
NMR systems and cold-atom experiments, a technique known as

multiple-quantum coherences has been shown to provide access
to both concurrence[293] and QFI.[294]

6. Technical Developments and Challenges for
Scattering Experiments

This more specialized section is primarily intended for readers
interested in current experimental technique development. Sec-
tion 6.1 reviews progressmade on realizing scattering probes that
are themselves entangled. Section 6.2 discusses experimental re-
quirements for resolution and polarization capabilities, as well as
future instrumentation.

6.1. Entangled Beams

So far we have considered measurement of entanglement in ma-
terials using conventional probes. However, entangled beams
could offer an alternative path to probing quantum correlations
in materials.
While beams of entangled neutron pairs are possible in prin-

ciple, they are currently not available due to issues of sources
andmoderators. Conventional reactor and spallation sources pro-
duce unentangled fluxes of neutrons so isotope decay is needed
to produce pairs through double (n = 2) (5H, 10He, and 21B)
emission processes.[295] However, isotope sources produce orders
of magnitude less flux than that needed for scattering experi-
ments. Besides, themoderation process involves collisions which
cause loss of entanglement. An alternative approach is to self-
entangle neutrons.
Modal entanglement involves entangling disjoint Hilbert

space properties of the neutron’s spin, position, momentum
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Figure 13. Left: a Schematic plan view of the main spin manipulation components of the Larmor instrument used to generate the mode-entangled
Greenberger–Horne–Zeilenger states in ref. [297] showing the evolution of the neutron path and spin states along the beam line. A superposition of
up and down spin states at the beginning of the instrument are manipulated using RF flippers and magnetic fields. They are refracted along different
paths and separated by the entanglement length, 𝜉, in the space between the second and third RF flippers. b A plot of the total neutron energy for each
neutron spin state along the beam line. Each RF flipper reverses a neutron spin state at the same time as it exchanges a quantum of RF energy with
that state. A difference in the energy phase between the two spin states develops in the space between each pair of RF flippers because the two states
have different total energies. Panels from Figure 1 of ref. [297], reproduced under the CC BY 4.0 license.[205] Copyright 2020, J. Shen et al., published by
Springer Nature. Right: Magnetic scattering of an entangled probe (entanglement length 𝜉) from a dimer of size d[301] allows the entanglement in the
dimer to be quantified when 𝜉 and d are similar in size. Figure 3 of ref. [301], reproduced under the CC BY 4.0 license.[205] Copyright 2021, A. A. M. Irfan
et al., published by IOP Publishing.

etc. Engineering of such self-entangled neutron states has been
demonstrated with high efficiency and precision[296–298]: Entan-
glement of two[299] and three[296,300] degrees of freedom by utiliz-
ing neutron polarimetry and radio frequency and static magnetic
fields have been achieved.
Flexible beams that integrate into neutron scattering instru-

mentation have demonstrated entangled properties[297,298,302]

proposed to be suitable for “investigations of microscopic
magnetic correlations in systems with strongly entangled
phases, such as those believed to emerge in unconventional
superconductors.”[297] These use spin echo type techniques
to manipulate wavepackets[303–305] with components such as
magnetic Wollaston prisms and resonance-field radio-frequency
flippers that can fit on diffractometers and spectrometers; see
Figure 13.
Robust beams over different apparatuses and neutron

pathways[302] entangling spin, trajectory, and energy,[297] as well
as orbital angularmomentum,[306] have been generated, showing
promising progress toward application.
On the theory side, extensions of standard scattering theory[307]

to include mode entanglement[301] results in a generalization of
VanHove scattering theory.[308] Themagnetic response, although
still expressed in terms of two-point correlation functions, is
modified reflecting the entanglement of the beam and that within
the scattering target. For example, tuning the beam’s entangle-
ment length allows the interrogation of spatial scales by analyz-
ing interference patterns in the differential cross-section.[301]

For the simplest case of a spin dimer target, Figure 13, a
Young-like interference pattern observed if the target state is un-
entangled becomes quantum erased when the target state be-
comes maximally entangled. This suggests that features of en-
tanglement inmaterialsmay be revealed and interpreted through
qualitative signatures in the scattering patterns. More work on

scattering from different cases is however needed to determine
how useful this could be.
While progress has beenmade in theory and experiment, open

questions remain. Experiments on quantum magnetic materials
are required to demonstrate the effectiveness of these techniques.
Also, exploitation of properties such as the entanglement length
of the probe are novel, yet how well these match with the entan-
glement scales in targetmaterials needsmore clarification.Much
work remains to be done to explore the potential of this novel ex-
perimental approach.
To-date, less work has been undertaken toward entangled pho-

ton beams suitable for studying the properties of materials. A key
bottleneck here is preparing sufficiently intense beams of entan-
gled x-rays. Recently, the use of Hong–Ou–Mandel interferom-
eters to create fully entangled N00N (N = 2) biphoton states at
high-intensity synchrotron sources has been proposed.[309] Im-
plementation is expected to be achievable with currently avail-
able beamsplitters and interferometers on the latest generation
of synchrotrons. Beams with a high fraction of biphoton pairs
can then be separated using diffraction from the single photon
(unentangled) background. Intense emission of entangled x-ray
photon pairsmay also be achievable using undulators at free elec-
tron lasers.[310] This would bring significant advantages in inten-
sity and time structure which could open many new directions
of study.

6.2. Experimental Capabilities and Requirements

Entanglement witnesses, quantum correlators, and entangled
beams bring up new measurement challenges and instrumenta-
tion needs. For spin systems probed with neutron spectroscopy,
fully polarized neutron scattering (FPNS)[311,312] where the x, y, z
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spin components of the incident and scattered neutrons can be
selected, will ideally be needed. FPNS on diffractometers can de-
terminemoment directions and sizes inmore complex magnetic
structures than is possible with unpolarized beams. FPNS is also
useful to extract sum rules from elastic and inelastic scattering
as an alternative to sometimes hard to implement absolute nor-
malizations (especially on reactor-based instrumentation).
Current instruments such as HYSPEC[313] at the Spallation

Neutron Source at Oak Ridge National Laboratory and D7[314] at
the Institut Laue-Langevin (ILL) use supermirror analyzers, giv-
ing them limited capabilities for measuring S𝛼𝛽 (Q) (𝛼, 𝛽 = x, y, z)
in terms of polarization components and reciprocal space map-
ping respectively. Efficient mapping for diffuse FPNS is an im-
portant future goal for instrumentation given the essential infor-
mation locked in the scattering from the different spin compo-
nents.
The demands on inelastic instrumentation are greater than for

diffraction. The extraction of witnesses require wavevector and
energy ranges sufficient to be used for transformation into com-
binations of coordinate spaces i.e. R,Q, t, 𝜔 which need to be ac-
curately transformed. Mixtures of resolution conditions can be
tolerated, e.g., for the extraction of G(r, t), if transformations are
taken with care.[212] This can be achieved with many current di-
rect geometry time-of-flight spectrometers using Q, 𝜔 mapping
executed with a combination of incident energies to gain cover-
age across multiple Brillouin zones.
The extraction of spin components [S𝛼𝛽 (Q, 𝜔)] is hard to ac-

complish as nearly all instruments are either unpolarized or can
extract only one component at a time. One approach is to use
fully polarized triple-axis spectroscopy[311,315] to identify the spin
components involved in the signal. This can be aided by the ap-
plication of magnetic fields to Zeeman split in energy excitations
with different spin quantum numbers. Computational modeling
can also be used as an aid to separating components as was uti-
lized for QFI anaysis of Cs2CoCl4.

[135]

Simplifications of EWs to more easily measured quantities
such as the use of S(Q) for QFI rather than an energy integral
requiring S(Q, 𝜔) has been proposed.[70] Adoption of such strate-
gies could make a significant practical impact and this needs to
be pursued further.
Given the importance of inelastic FPNS it is notable that next-

generation neutron spectrometers, such as CHESS[316] at the Sec-
ond Target Station at Oak Ridge National Laboratory, are expected
to offer orders of magnitude increases in performance and will
implement full polarization analysis. Such capabilities could also
be implemented on reactor-based CAMEA-type[317] instruments.
These would be revolutionary capabilities for extraction of quan-
tum witnesses and correlators in materials.
For QFI much of the integral weight is contributed by low-

energy scattering. This requires high energy resolution and at
the same time sufficient wave-vector resolution.[160] This can
be challenging for neutron spectroscopy and detailed experi-
mental studies will be needed to find optimal scattering con-
figurations including the use of ultra-high-resolution spin-echo
techniques.[304,318] Spin echo can also measure correlations in R
and t[304] and can thus avoid Fourier transforms.
Polarization is also crucial for entangled beam studies, Sec-

tion 6.1. Specialized high-flux polarized beamlines will be needed
for efficient counting. Current polarized triple-axis spectrome-

ters suffer from having a single detector and need to be scanned
point-by-point, making measurements orders of magnitude
slower than conventional unentangled experiments. Spinmanip-
ulation components, such asmagneticWollaston prisms,[319] that
operate over wide scattering angles would bring the significant ef-
ficiency gains needed if this were to become a mainstream tech-
nique.
Finally, as noted in Sections 5.1 and 5.3 photons hold great

promise for application to EWs. However, as there has been little
work so far, we believe further discussion of experimental capa-
bilities and requirements is premature until technical needs be-
come clearer. It can be expected though that both nonresonant
and resonant xray techniques will be of interest.
The measurement of entangled charge-charge correlations in

materials[245] is of obvious interest and non-resonant inelastic x-
ray scattering could be useful here. Meanwhile, RIXS, which has
a more complex scattering matrix element which depends on the
orbital transition involved, can provide access to two-point and
four-point spin correlation functions as well as entanglement of
spin, charge, and orbital degrees of freedom. Although the en-
ergy resolution is typically in the tens of millivolts, measurement
times are fast enabling out-of-equilibrium studies[291] as well as
the dynamics in thin films, not accessible to neutrons due to flux
constraints, to be probed. Concerted development efforts along
with experiments on candidate materials will be needed to fully
utilize the potential of xrays.

7. Conclusion

We have reviewed applications of entanglement and quantum
correlation witnesses to condensed matter, including important
derivations, past experimental successes, and future directions
and challenges. The field is clearly at an inflection point: new,
model-independent witnesses have opened up the study of com-
plicated and poorly understood materials. Although it is often
possible to guess, based on (fallible) heuristics, whether a given
system hosts an entangled state, witness measurements allow
quantitative and therefore definitive statements to be made. Go-
ing forward, such quantitative information can help inform the-
oretical modeling and reasoning about states in materials, en-
abling new understanding.
Finally, as is evident from Table 2, within condensed mat-

ter, entanglement witnesses have been applied so far almost
exclusively to quantum magnets, where they have diversified
from dimerized materials to more complex quantum critical
and spin liquid states. However, as detailed in this review there
is significant scope for wider application to quantum critical
systems, heavy fermions, liquid helium, exotic superconductors,
and correlated electron systems generally. Indeed, recent INS
results on the strange metal Ce3Pd20Si6 show that QFI can ef-
fectively witness the entanglement in quantum critical metallic
systems.[243,244] This opens the way for protocols, similar to that
used for quantum spin liquids[229] to be developed. The EWs
in Table 2 utilized measurements based on susceptibility, heat
capacity, and neutron scattering. As this review has outlined,
there is significant scope for, and activity toward, expanding the
range of quantities and experimental techniques that can be
effectively used to probe entanglement in quantum matter, both
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Table 2. Table listing the materials reviewed in Section 4. Models of the relevant underlying quantum system for each material are given including the
alternating Heisenberg chain (AHC), Heisenberg antiferromagnetic chain (HAFC), triangular antiferromagnet (TAF), and anisotropic Heisenberg chain
with a uniaxial coupling anisotropy (XXZ chain); see text and references for more information. The entanglement and quantum correlation witnesses
are listed in Table 1 and described in Section 3. (*Note, these authors also extract entanglement of formation from the concurrence. See Section 3.4 for
more details on these quantitites). Experimental probes that have been applied to the materials are also listed; probes are magnetic susceptibility (𝜒m),
inelastic neutron scattering (INS), muon spin resonance (𝜇SR), and relevant heat capacity (Cv) of the quantum subsystem, e.g., the magnetic part with
phonon contributions subtracted.

Materials Model Entanglement and Correlation
Witnesses

Experimental
Probes

References

C8H16Cu2O10 S = 1∕2 dimer 𝜒EW, two-site QD 𝜒m Athira (2023) [168], Yurishchev
(2011) [124, 162]

C9H18N2CuBr4 S = 1∕2 ladder QFI INS (high
pressure)

Hong (2023) [241]

CeCu5.9Au0.1 heavy fermion QFI INS Fang (2024) [243]

Ce3Pd20Si6 heavy fermion/strange metal QFI INS Mazza(2024) [244]

copper carboxylate S = 1∕2 dimer 𝜒EW, concurrence 𝜒m Souza (2009) [164]

(Cr7Ni)2 supramolecular dimers S = 1∕2 coupled rings 𝜒EW, concurrence INS, 𝜒m Candini (2010), Garlatti (2017)
[173–175]

Cs2CoCl4 S = 1∕2 XXZ chain one-tangle, two-tangle, QFI INS Laurell (2021) [135]

[Cu(𝜇 − C2O4)(4 − aminopyridine)2(H2O)]n S = 1∕2 HAFC 𝜒EW, QFI (qualitative T-dependence) INS (powder) Matthew (2020) [204]

[Cu(NO3)22.5H2O S = 1∕2 AHC 𝜒EW, concurrence, two-site QD INS, 𝜒m, Cv Brukner (2006) [63], Singh
(2013) [67], Wieśniak (2005)
[65], Yurishchev (2011) [162]

Cu(thiazole)2Cl2 S = 1∕2 HAFC 𝜒EW 𝜒m Chakraborty (2012) [202]

Fe2(𝜇2 − oxo) − (C3H4N2)6(C2O4)2 S = 5∕2 dimer 𝜒EW 𝜒m Reis (2012) [166]

KCuF3 S = 1∕2 HAFC one-tangle, two-tangle, QFI, QV, SI

spatial quantum correlation
functions

INS Scheie (2021) [92], Scheie
(2024) [110]

KNaMSi4O10 (M =Mn, Fe, or Cu) S = 5∕2, 2, 1∕2 𝜒EW 𝜒m Pinto (2009) [165]

KYbSe2 S = 1∕2 TAF one-tangle, two-tangle, QFI INS Scheie (2024) [229]

LiHo0.045Y0.955F4 3D dilute Ising model concurrence 𝜒m, Cv Ghosh (2003) [74]

MgMnB2O5 S = 5∕2 dimer

(Griffiths phase) 𝜒EW 𝜒m Rappoport (2007) [169]

MgTiOBO3 S = 1∕2 dimer

(random singlet phase) 𝜒EW 𝜒m Rappoport (2007) [169]

Na2Cu5Si4O14 S = 1∕2 cluster chain 𝜒EW, concurrence* 𝜒m Souza (2008) [106]

Na2V3O7 S = 1∕2 ring clusters 𝜒EW 𝜒m Vértesi (2006) [172]

NH4CuPo4 ⋅H2O S = 1∕2 dimer 𝜒EW, concurrence* 𝜒m, Cv Chakraborty (2014) [167]

nitrosyl Fe complexes S = 1∕2 dimer 𝜒EW, two-site QD 𝜒m, Cv Aldoshin (2014) [124]

spiro-bis (1, 9-disubstituted

-phenalenyl) boron S = 1∕2 HAFC 𝜒EW 𝜒m Chakraborty (2013) [203]

Sr14Cu24O41 S = 1∕2 cluster chain concurrence, two-site QD 𝜒m Sahling (2015) [170]

YbZnGaO4 S = 1∕2 TAF QFI 𝜇SR Pratt (2023) [237, 240]

in- and out-of-equilibrium. For these reasons, the future of the
field will undoubtedly bring exciting new developments.

Appendix A: Sketch of Linear Response Theory

This appendix provides a brief primer on linear response theory, in-
cluding different expressions of 𝜒 ′′. The purpose is to set a consistent
notation, as mixing different notations can lead to mistaken conclusions
about the entanglement depth. We follow the convention used in Ap-
pendix B of Lovesey’s book,[312] to which readers are referred for additional
details. Similar treatments, albeit with some stylistic differences, can be
found in, e.g., Appendix D of Boothroyd’s book[311] and Chapter 3 of the
book by Jensen and Mackintosh.[320] For the convenience of experimen-

tally minded readers we will keep factors of ℏ and kB explicit, but suppress
potential momentum dependence.

In many experimental techniques one applies a (relatively weak) pertur-
bation to a system and then observes the effect in the response of a mea-
sured quantity. This may be described by considering an isolated system
that is initially (at time t = −∞) at thermal equilibriumwith temperature T,
and described by a time-independent Hamiltonian0. A time-dependent
external perturbation 1 is allowed to act on the system, giving the total
Hamiltonian at time t

(t) = 0 −1(t) ≡ 0 − B̂h(t) (A1)

where the time dependence of 1 is captured by the real-valued function
h(t) and B̂ is a Hermitian operator. The response of the system is reflected
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in a change of a variable A that is not itself explicitly time-dependent and
corresponds to a Hermitian operator Â. For a linear response we have

A(t) = ⟨Â⟩0 + ∫
t

−∞
dt′𝜙AB

(
t − t′

)
h
(
t′
)

(A2)

where the equilibrium average ⟨Â⟩0 = Tr
[

𝜌0Â
]
and 𝜌0 is the density matrix

at t = −∞. Equation (A2) implicitly defines the real-valued response func-
tion 𝜙AB(t) that incorporates history effects. The perturbation can gener-
ally be Fourier decomposed into a set of frequencies {𝜔}, each of which has
the time dependence ei𝜔t. We assume that the perturbation 1 describes
an adiabatic process, such that the system is in equilibrium at each time
t, albeit with a state that is time-dependent. This is achieved by turning
on the perturbation very slowly, by making the replacement ei𝜔t → ei𝜔t+𝜖t,
where 𝜖 > 0 is a small number. At the end of the calculation, we will let
𝜖 → 0+. Taking the time dependence to be h(t) = h exp (𝜖t) cos (𝜔t), where
h is real, we can write

A(t) = ⟨Â⟩0 − hRe{exp (i𝜔t)𝜒AB[𝜔]} (A3)

where the generalized susceptibility 𝜒 [𝜔] is defined as

𝜒AB[𝜔] = − lim
𝜖→0+ ∫

∞

0
dt𝜙AB(t) exp (−i𝜔t − 𝜖t) (A4)

= 𝜒 ′
AB[𝜔] + i𝜒 ′′

AB[𝜔] (A5)

Following Lovesey we use the notation [𝜔] to indicate a one-sided Fourier
transform, in which the integral is taken only over positive real axis. 𝜒 ′

AB [𝜔]
and 𝜒 ′′

AB
[𝜔] denote the real and imaginary parts of the generalized suscep-

tibility, respectively. Since 𝜙AB(t) ∈ ℝ for real external perturbations, we
must have 𝜒 ′ [𝜔] = 𝜒 ′ [−𝜔], 𝜒 ′′ [𝜔] = −𝜒 ′′ [−𝜔].

We next derive the fluctuation-dissipation theorem. By assumption of a
weak perturbation, the average value of1 is very small compared to ⟨0⟩.
The Heisenberg equation gives the time evolution of the density matrix 𝜌,
iℏ�̇�(t) = [, 𝜌] with initial condition 𝜌(−∞) = 𝜌0. Letting 𝜌(t) = 𝜌0 + Δ𝜌(t)
and ignoring second-order effects,

iℏ ̇𝜌(t) = −[1, 𝜌0] − [Δ𝜌(t),0] (A6)

Expressing 𝜌(t) in the interaction picture,[105]

𝜌I(t) = eit0∕ℏ 𝜌(t)e−it0∕ℏ (A7)

⇒ iℏ�̇�I(t) = eit0∕ℏ[𝜌0,1]e
−it0∕ℏ (A8)

Returning to the Schrödinger picture and integrating yields

Δ𝜌(t) = 1
iℏ ∫

t

−∞
dt′h(t′)

[
𝜌0, B̂(t

′ − t)
]

(A9)

Since the process is adiabatic, A(t) = Tr
[
(𝜌0 + Δ𝜌(t)) Â

]
. Using the cyclic

property of the trace the time dependence can be moved from B̂ to Â,

A(t) − ⟨Â⟩0 = 1
iℏ ∫

t

−∞
dt′h(t′)Tr

{[
𝜌0, B̂(0)

]
Â(t − t′)

}
(A10)

By comparing with Equation (A2) and using the cyclic property of the trace
we find

𝜙AB(t − t′) = 1
iℏ
Tr
{[

𝜌0, B̂(0)
]
Â(t − t′)

}
(A11)

= i
ℏ

⟨[
Â(t), B̂(t′)

]⟩
0 (A12)

establishing the relation between spontaneous fluctuations and the lin-
ear response.

In the Van Hove formulation of scattering experiments, the observed
cross section is directly related to a dynamical structure factor

S(𝜔) = 1
2𝜋ℏ ∫

∞

−∞
dt exp (−i𝜔t)

⟨
B̂(0)B̂†(t)

⟩
(A13)

which, unlike 𝜒 [𝜔], is a purely real function. We want to relate it to the re-
sponse function 𝜙(t) ≡ 𝜙B†B(t) =

i
ℏ

⟨[
B̂†(t), B̂

]⟩
. To achieve this, we con-

sider the Fourier transform of 𝜙(t):

𝜙(𝜔) = 1
2𝜋 ∫

∞

−∞
dt exp (−i𝜔t)𝜙(t) (A14)

= i
2𝜋ℏ ∫

∞

−∞
dt exp (−i𝜔t)

⟨
B̂†(t)B̂(0) − B̂(0)B̂†(t)

⟩
(A15)

The last term is proportional to Equation (A13), and we can write

𝜙(𝜔) = −iS(𝜔) + i
2𝜋ℏ ∫

∞

−∞
dt exp (−i𝜔t)

⟨
B̂†(t)B̂(0)

⟩
(A16)

Applying the identity ⟨B̂†(t)B̂(0)⟩ = ⟨
B̂(0)B̂† (t + i𝛽 ℏ)

⟩
to the second term

and assuming analyticity in an appropriate region of the complex plane,
we can perform a complex frequency/time shift of the Fourier transform
to get

∫
∞

−∞
dt exp (−i𝜔t)

⟨
B̂†(t)B̂(0)

⟩
= ∫

∞

−∞
dt exp (−i𝜔t)

⟨
B̂(0)B̂†(t + iℏ𝛽)

⟩
= e−𝛽 ℏ𝜔2𝜋ℏS(𝜔) (A17)

Equation (A16) can now be written

𝜙(𝜔) = i
(
e−𝛽 ℏ𝜔 − 1

)
S(𝜔) (A18)

or, alternatively, using Equation (A14),

S(𝜔) =
(
1 − e−𝛽 ℏ𝜔

)−1 i
2𝜋 ∫

∞

−∞
dte−i𝜔t𝜙(t) (A19)

If 𝜙(t) is odd in t, the expression reduces to

S(𝜔) =
(
1 − e−𝛽 ℏ𝜔

)−1 1
𝜋 ∫

∞

0
dt sin (𝜔t)𝜙(t) (A20)

Recalling Equation (A4), we obtain a form of the fluctuation-dissipation
theorem familiar in scattering,

S(𝜔) =
(
1 − e−𝛽 ℏ𝜔

)−1 1
𝜋

𝜒 ′′[𝜔] (A21)

We next derive the Källén–Lehmann spectral representation of the dynami-
cal susceptibility. Using Equations (A4) and (A12) we have, for a Hermitian
operator  (suppressing the ̂ from now on),

𝜒[𝜔] = −∫
∞

0
dt i

ℏ
⟨[(t),(0)]⟩0e−i𝜔t (A22)

= − i
Zℏ ∫

∞

0
dte−i𝜔t

∑
𝜆

e−iE𝜆 𝛽
{⟨

𝜆|ei0t∕ℏe−i0t∕ℏ|𝜆
⟩

−
⟨

𝜆|ei0t∕ℏe−i0t∕ℏ|𝜆
⟩
0

}
(A23)
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where |𝜆⟩ is an energy eigenstate with eigenvalue E𝜆, and where Z is the
partition function. Now, introduce the resolution of identity,

𝜒[𝜔] = − i
Zℏ ∫

∞

0
dte−i𝜔t

∑
𝜆,𝜆′

e−iE𝜆 𝛽 (A24)

{⟨
𝜆|ei0t∕ℏ|𝜆′⟩⟨𝜆′|e−i0t∕ℏ|𝜆

⟩
−
⟨

𝜆|ei0t∕ℏ|𝜆′⟩⟨𝜆′|e−i0t∕ℏ|𝜆
⟩
0

}
Recalling that e−i0t∕ℏ|𝜆⟩ = e−iE𝜆t∕ℏ|𝜆⟩ and ⟨𝜆|ei0t∕ℏ = ⟨𝜆|eiE𝜆t∕ℏ, one ob-
tains

𝜒[𝜔] = − i
Zℏ ∫

∞

0
dte−i𝜔t

∑
𝜆,𝜆′

e−iE𝜆 𝛽 ||⟨𝜆||𝜆′⟩||2
×
{
ei(E𝜆−E𝜆′ )t∕ℏ − ei(E𝜆′ −E𝜆)t∕ℏ

}
(A25)

= − i
Zℏ

∑
𝜆,𝜆′

e−iE𝜆 𝛽 ||⟨𝜆||𝜆′⟩||2 (A26)

× 𝜋

{
𝛿

(
𝜔 +

E𝜆′

ℏ
−

E𝜆

ℏ

)
− 𝛿

(
𝜔 −

E𝜆′

ℏ
+

E𝜆

ℏ

)}
where 𝛿(x) is the Dirac delta function. Using the definition that p𝜆 =
e−E𝜆∕kBT∕Z,

𝜒[𝜔] = i
ℏ

∑
𝜆,𝜆′

||⟨𝜆||𝜆′⟩||2𝜋 (A27)

×
[
p𝜆 𝛿

(
𝜔 −

E𝜆′

ℏ
+

E𝜆

ℏ

)
− p𝜆 𝛿

(
𝜔 +

E𝜆′

ℏ
−

E𝜆

ℏ

)]
Relabeling 𝜆 ↔ 𝜆′ in the second term, and absorbing the 1∕ℏ into the ar-
gument of the 𝛿 function, we obtain

𝜒 ′′[𝜔] =
∑
𝜆,𝜆′

(p𝜆 − p𝜆′ )
|||⟨𝜆||𝜆′⟩|||2𝜋 𝛿(ℏ𝜔 − E𝜆′ + E𝜆) (A28)

A.1. Notes on Notational Differences

To minimize confusion, we want to highlight some differences be-
tween the convention adopted here, and that adopted in the semi-
nal work of Hauke et al.[39] Their definition of the dynamical struc-
ture factor does not include the factor 1∕𝜋 present in Equation (A13),
which is conventional for neutron scattering. Furthermore, they work with
a frequency-symmetrized structure factor S̃(𝜔) = S(𝜔) + S(−𝜔), which
modifies the fluctuation-dissipation theorem from Equation (A21) to
𝜒 ′′[𝜔] = 1

ℏ
tanh (ℏ𝜔𝛽∕2) S̃(𝜔). Finally, we treat all susceptibilities and

structure factors as intensive quantities, i.e. including a system size nor-
malization factor as is conventional in the magnetism literature, whereas
this is not assumed in ref. [39].

Acknowledgements
The work of P.L. and E.D. was supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences, Materials Sciences and Engineer-
ing Division. The work by A.S. and D.A.T. was supported by the Quan-
tum Science Center (QSC), a National Quantum Information Science Re-
search Center of the U.S. Department of Energy (DOE). D.A.T. would like
to thank J. Quintanilla, R. Pynn, and G. Ortiz for enlightening discussions.
P.L. would like to thank E. B. Fel’dman andG.Mazza for helpful comments.

Conflict of Interest
The authors declare no conflicts of interest.

Keywords
entanglement detection, entanglement measures, inelastic neutron scat-
tering, quantum correlations, quantum materials, spectroscopy

Received: April 30, 2024
Revised: October 4, 2024

Published online:

[1] O. Gühne, G. Tóth, Phys. Rep. 2009, 474, 1.
[2] Basic research needs workshop on quantum materials for energy

relevant technology, Technical report, US Department of Energy,
Office of Science, United States, 2016, https://doi.org/10.2172/
1616509. accessed: (November 2020)

[3] Midscale instrumentation for quantum materials, Technical
report, National Science Foundation, Division of Materials Re-
search, United States, 2018, https://www.nsf.gov/mps/dmr/
MIQM_report_v15.pdf . accessed: (November 2020)

[4] N. Friis, G. Vitagliano, M. Malik, M. Huber, Nat. Rev. Phys. 2019, 1,
72.

[5] X.-D. Yu, J. Shang, O. Gühne, Adv. Quantum Technol. 2022, 5,
2100126.

[6] K.Wang, Z. Song, X. Zhao, Z.Wang, X.Wang, npj Quantum Inf. 2022,
8, 52.

[7] L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 2008, 80,
517.

[8] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod.
Phys. 2009, 81, 865.

[9] N. Laflorencie, Phys. Rep. 2016, 646, 1.
[10] G. D. Chiara, A. Sanpera, Rep. Prog. Phys. 2018, 81, 074002.
[11] B. Zeng, X. Chen, D.-L. Zhou, X.-G. Wen, Quantum Information

Meets Quantum Matter: From Quantum Entanglement to Topologi-
cal Phases of Many-Body Systems, Springer, New York 2019.

[12] A. Bayat, S. Bose, H. Johannesson, editors, Entanglement in Spin
Chains: From Theory to Quantum Technology Applications, Springer,
Cham 2022.

[13] Y. Tokura, M. Kawasaki, N. Nagaosa, Nat. Phys. 2017, 13, 1056.
[14] B. Keimer, J. Moore, Nat. Phys. 2017, 13, 1045.
[15] R. Cava, N. de Leon, W. Xie, Chem. Rev. 2021, 121, 2777.
[16] S. A. Iyengar, A. B. Puthirath, V. Swaminathan, Adv. Mater. 2023, 35,

2107839.
[17] I. Frérot, M. Fadel, M. Lewenstein, Rep. Prog. Phys. 2023, 86, 114001.
[18] C. Cruz, Physica B: Condens. Matter 2023, 653, 414485.
[19] S. J. Freedman, J. F. Clauser, Phys. Rev. Lett. 1972, 28, 938.
[20] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Phys. Rev. Lett.

1969, 23, 880.
[21] G. Vidal, J. I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 2003, 90,

227902.
[22] M. A. Rajabpour, Phys. Rev. D 2017, 96, 126007.
[23] X.-G. Wen, Rev. Mod. Phys. 2017, 89, 041004.
[24] A. Kitaev, J. Preskill, Phys. Rev. Lett. 2006, 96, 110404.
[25] M. Levin, X.-G. Wen, Phys. Rev. Lett. 2006, 96, 110405.
[26] Y. Zhou, K. Kanoda, T.-K. Ng, Rev. Mod. Phys. 2017, 89, 025003.
[27] L. Savary, L. Balents, Rep. Prog. Phys. 2017, 80, 016502.
[28] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman,

T. Senthil, Science 2020, 367, 263.
[29] A. Y. Kitaev, Ann. Phys. (N.Y.) 2003, 303, 2.

Adv. Quantum Technol. 2024, 2400196 2400196 (27 of 33) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202400196 by U

niversity O
f T

ennessee K
noxville, W

iley O
nline L

ibrary on [07/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com
https://doi.org/10.2172/1616509
https://doi.org/10.2172/1616509
https://www.nsf.gov/mps/dmr/MIQM_report_v15.pdf
https://www.nsf.gov/mps/dmr/MIQM_report_v15.pdf


www.advancedsciencenews.com www.advquantumtech.com

[30] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev.
Mod. Phys. 2008, 80, 1083.

[31] A. Krasnok, P. Dhakal, A. Fedorov, P. Frigola, M. Kelly, S. Kutsaev,
Appl. Phys. Rev. 2024, 11, 011302.

[32] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup,
L. C. Hollenberg, Phys. Rep. 2013, 528, 1.

[33] S. Pezzagna, J. Meijer, Appl. Phys. Rev. 2021, 8, 011308.
[34] M. Saffman, T. G.Walker, K. Mølmer, Rev. Mod. Phys. 2010, 82, 2313.
[35] F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, Y. Takahashi,Nat. Rev.

Phys. 2020, 2, 411.
[36] J. Nakamura, S. Liang, G. C. Gardner, M. J. Manfra,Nat. Phys. 2020,

16, 931.
[37] H. K. Kundu, S. Biswas, N. Ofek, V. Umansky, M. Heiblum, Nat.

Phys. 2023, 19, 515.
[38] J. Nakamura, S. Liang, G. C. Gardner,M. J.Manfra, Phys. Rev. X 2023,

13, 041012.
[39] P. Hauke, M. Heyl, L. Tagliacozzo, P. Zoller,Nat. Phys. 2016, 12, 778.
[40] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 1935, 47, 777.
[41] N. Bohr, Phys. Rev. 1935, 48, 696.
[42] E. Schrödinger, Naturwissenschaften 1935, 23, 807.
[43] J. S. Bell, Phys. Physiq. Fizika 1964, 1, 195.
[44] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Col-

lected Papers on Quantum Philosophy, 2nd ed., Cambridge University
Press, Cambridge 2004.

[45] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev.
Mod. Phys. 2014, 86, 419.

[46] B. Cirel’son, Lett. Math. Phys. 1980, 4, 93.
[47] A. Aspect, Nature 1999, 398, 189.
[48] A. Zeilinger, Rev. Mod. Phys. 1999, 71, S288.
[49] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok,

J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W.
Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D.
Elkouss, S. Wehner, T. H. Taminiau, R. Hanson, Nature 2015, 526,
682.

[50] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner,
A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C.
Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A.
E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A.
Zeilinger, Phys. Rev. Lett. 2015, 115, 250401.

[51] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M.
A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S.
Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma,
C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W.
H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V.
Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, et al., Phys. Rev.
Lett. 2015, 115, 250402.

[52] W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M.
Rau, H. Weinfurter, Phys. Rev. Lett. 2017, 119, 010402.

[53] M.-H. Li, C. Wu, Y. Zhang, W.-Z. Liu, B. Bai, Y. Liu, W. Zhang, Q.
Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C.-Z.
Peng, X. Ma, Q. Zhang, J. Fan, J.-W. Pan, Phys. Rev. Lett. 2018, 121,
080404.

[54] S. Storz, J. Schär, A. Kulikov, P. Magnard, P. Kurpiers, J. Lütolf, T.
Walter, A. Copetudo, K. Reuer, A. Akin, J.-C. Besse, M. Gabureac,
G. J. Norris, A. Rosario, F. Martin, J. Martinez, W. Amaya, M. W.
Mitchell, C. Abellan, J.-D. Bancal, N. Sangouard, B. Royer, A. Blais,
A. Wallraff, Nature 2023, 617, 265.

[55] P. Horodecki, Phys. Lett. A 1997, 232, 333.
[56] B. M. Terhal, Phys. Lett. A 2000, 271, 319.
[57] M. Lewenstein, B. Kraus, J. I. Cirac, P. Horodecki, Phys. Rev. A 2000,

62, 052310.
[58] P. Hyllus, O. Gühne, D. Bruß, M. Lewenstein, Phys. Rev. A 2005, 72,

012321.
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