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A B S T R A C T

This tutorial is a pedagogical introduction to recent methods of computing quantum spin entanglement
witnesses from spectroscopy, with a special focus on neutron scattering on quantum spin systems. We offer a
brief introduction to the concepts and equations, define a data analysis protocol, and discuss the interpretation
of three entanglement witnesses: one-tangle, two-tangle, and Quantum Fisher Information. We also discuss
practical experimental considerations, and give three examples of extracting entanglement witnesses from
experimental data: Copper Nitrate, KCuF3, and NiPS3.
1. Introduction

In solid state materials, quantum entanglement between electrons
can drive systems into exotic states, including superconducting, quan-
tum critical, quantum spin liquid, and fractional quantum states [1].
Historically, the presence of highly entangled quantum states in con-
densed matter has been inferred by comparing materials to theoretical
models. However, recent work has shown that spectroscopy can be used
to directly measure quantum entanglement in materials in a model-
independent fashion [2–9]. This allows detection of a highly entangled
quantum state without recourse to detailed theoretical modeling (which
is often prohibitively difficult). A detailed review of these methods
has been recently given in Ref. [10]. This tutorial is a pedagogical
guide to extracting quantum entanglement from spectroscopy with
a special focus on neutron scattering. The outline for this tutorial
is as follows: Section 2 defines key terms and equations, Section 3
outlines a data analysis protocol for extracting entanglement witnesses,
Section 4 discusses the interpretation of spectroscopic quantum en-
tanglement witnesses, Section 5 discusses considerations for planning
a neutron scattering experiment to extract entanglement, and finally
Section 6 gives several worked-through experimental examples of the
entanglement witnessing protocol.

2. Definitions and equations

Quantum entanglement is when two degrees of freedom cannot
be described independently of each other: measuring one affects the

∗ Corresponding author.
E-mail address: scheie@lanl.gov (A. Scheie).

other and vice versa. Formally, this is defined as a state being non-
separable [11]. However, because such properties rely upon complex
amplitudes and are thus not straightforwardly measurable, an alter-
native approach is to use indirect measures of entanglement, called
entanglement witnesses: observable quantities which detect the presence
of entanglement in a system [12,13]. The most famous (and first) en-
tanglement witness is Bell’s inequality, which reveals the entanglement
between two particles separated in space [14,15], versions of which
have been experimentally verified to remarkable precision [16–18].

However, Bell’s approach requires individually manipulating and
measuring particles. The problem becomes quite different when one
considers the entanglement between electrons in solid materials, where
∼ 1023 electrons interact and cannot be individually manipulated and
measured. In this case, it has been shown recently that spectroscopy
can be used to witness solid state quantum entanglement [2–5,7,10].
Here we use three experimentally validated entanglement witnesses,
namely the Quantum Fisher Information, one-tangle, and two-tangle,
to illustrate the method for extracting quantum information from neu-
tron data—and importantly, how to use combinations of entanglement
witnesses to describe a system’s quantum state.

The definitions for these quantum entanglement witnesses are as
follows:

Quantum Fisher information

Quantum Fisher Information (QFI) gives a lower bound on multi-
partite entanglement, or the number of entangled objects which is also
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called entanglement depth [19,20]. For a pure state |𝜓⟩, the QFI of a
ystem is directly proportional to the variance of an observable

𝑓 = 4 (⟨𝜓|†|𝜓⟩ − ⟨𝜓||𝜓⟩2
)

(1)

where  is a Hermitian quantum operator with a bounded eigen-
alue spectrum [5]. For magnetic neutron scattering,  = 𝑆𝛼(𝐐) =
𝑗 𝑆

𝛼
𝑗𝑒
𝑖𝐐⋅𝐫𝑗 . Readers familiar with neutron scattering will note that the

irst term in Eq. (1), ⟨𝑆†
𝛼 (𝐐)𝑆𝛼(𝐐)⟩ corresponds to the total scattering at

a particular wavevector 𝐐, and the second term ⟨𝑆𝛼(𝐐)⟩2 corresponds
to the elastic (ℏ𝜔 = 0) scattering at wavevector 𝐐 [21]. Therefore, for a
ure state (𝑇 = 0 limit), 𝑓 is proportional to the difference between to-
al and elastic scattering. In other words, the energy-integrated inelastic
cattering at 𝑇 = 0 corresponds to the QFI.

Unfortunately, real experiments are always performed at nonzero
temperature and typically probe thermally mixed states, not a pure
state. A key breakthrough was provided by Hauke et al. [5] who proved
hat the equation for QFI of a thermal state is related to an energy

integral over the imaginary part of the dynamic susceptibility:

𝑓 [𝐐, 𝑇 ] = 4
𝜋 ∫

∞

0
d(ℏ𝜔) t anh

(

ℏ𝜔
2𝑘𝐵𝑇

)

𝜒 ′′
𝛼 𝛼 (𝐐, 𝜔) , (2)

where 𝑇 is temperature, ℏ𝜔 is the energy transfer, and for neutron
cattering imaginary dynamic susceptibility is conventionally

𝜒 ′′
𝛼 𝛽 (𝐐, 𝜔) = 𝜋

(

1 − 𝑒−ℏ𝜔∕𝑘𝐵𝑇 )𝑆𝛼 𝛽 (𝐐, 𝜔) (3)

[22] and the neutron structure factor is
𝑆𝛼 𝛽 (𝐐, 𝜔) = 1

2𝜋 ℏ ∫

∞

−∞
𝑑 𝑡⟨𝑆†

𝛼 (𝐐)𝑆𝛽 (𝐐, 𝑡)⟩ exp(−𝑖𝜔𝑡) (4)

where 𝑡 is time [21]. Thus QFI can be experimentally determined at
an arbitrary temperature. Note that as 𝑇 → 0, the tanh factor in Eq. (2)
pproaches 1, Eq. (3) becomes 𝜒 ′′ (𝐐, 𝜔) = 𝜋 𝑆 (𝐐, 𝜔), and thereby

Eq. (2) reduces to Eq. (1).
The relationship between QFI and multipartite entanglement is

𝑓 > 𝑚(ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛)2

where 𝑚 is an integer and is the lower bound on entanglement depth,
and ℎ𝑚𝑖𝑛∕𝑚𝑎𝑥 are the minimal and maximal eigenvalues of the local
operators building up  [19,20,23,24]. The choice of  = 𝑆𝛼(𝐐) in
q. (1) fixes ℎ𝑚𝑎𝑥 = −ℎ𝑚𝑖𝑛 = 𝑆 such that (ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛)2 = 4𝑆2. Thus we

can define normalized QFI (nQFI) as

nQFI [𝐐, 𝑇 ] = 𝑓 [𝐐, 𝑇 ]
4𝑆2

> 𝑚, (5)

where 𝑆 is the quantum spin length and 𝑚 is an integer, and nQFI >
𝑚 indicates a system with at least 𝑚 + 1 partite entanglement [3,5]
e.g., nQFI = 2.718 would indicate ≥ 3-partite entanglement). In this

way, a lower bound on entanglement can be probed as a function of
temperature.

For most practical purposes, Eqs. (2), (3), and (5) can be combined
into a single equation:

nQFI[𝐐, 𝑇 ] = 1
𝑆2 ∫

∞

0
d(ℏ𝜔)

[

t anh
(

ℏ𝜔
2𝑘𝐵𝑇

)

(

1 − 𝑒−ℏ𝜔∕𝑘𝐵𝑇 )𝑆𝛼 𝛼(𝐐, 𝜔)
] (6)

relating 𝑆𝛼 𝛼(𝐐, 𝜔) to nQFI, and thus to a lower bound on multipartite
entanglement. Note that the bound in Eq. (5) is derived for a single po-
larization component 𝑆𝛼 𝛼 . For data where all components are summed,
i.e. 𝑆t ot = 𝑆𝑥𝑥 + 𝑆𝑦𝑦 + 𝑆𝑧𝑧, the bound is instead nQFI [𝐐, 𝑇 ] = 𝑓[𝐐,𝑇 ]

12𝑆2 >
[4].

One-tangle 𝜏1

The one-tangle [25,26] is a quantity measuring the entanglement
etween a 𝑆 = 1∕2 degree of freedom and the rest of the system. As
2 
such, it allows powerful statements to be made about the quantum state
of the system. It is defined at 𝑇 = 0 as

𝜏1 = 1 − 4
∑

𝛼
⟨𝑆𝛼𝑗0 ⟩

2. (7)

where 𝛼 ∈ {𝑥, 𝑦, 𝑧} and 𝑗0 is the site index of an arbitrary site of
the lattice. Note that ⟨𝑆𝛼𝑗0 ⟩ represents a measurement on a single
site or magnetic sublattice, i.e. it does not vanish in, for example, a
classical Néel-ordered state. 𝜏1 is essentially a measure of the static
𝑇 = 0 moment (as measured e.g. by the elastic magnetic scattering).

onceptually, it can be understood as follows: when a spin interacts
with its environment, time reversal symmetry will be broken at the
lowest temperatures, and the spin freezes. However, if there is nonzero
quantum entanglement, spins will not completely freeze as 𝑇 → 0. The
one-tangle is maximal (𝜏1 = 1) when a spin is completely dynamic
and minimal (𝜏1 = 0) when it is completely static. In reality it is not
possible to measure at 𝑇 = 0, so this measure should only be applied
at low temperatures when it is clear that a system’s order parameter is
saturated.

Two-tangle 𝜏2

The two-tangle is a measure of total bipartite (pairwise) entangle-
ent, which is based on concurrence [27], which is itself a measure

of entanglement between two objects. For a system with translational
invariance, the concurrence between two 𝑆 = 1∕2 spins is related to
spin correlations via

𝐶𝑖𝑗 = 2 max
{

0, ||
|

𝑔𝑥𝑥𝑖𝑗 − 𝑔𝑦𝑦𝑖𝑗
|

|

|

− 1
4
+ 𝑔𝑧𝑧𝑖𝑗 ,

|

|

|

𝑔𝑥𝑥𝑖𝑗 + 𝑔𝑦𝑦𝑖𝑗
|

|

|

−

√

( 1
4
+ 𝑔𝑧𝑧𝑖𝑗

)2
−
(

𝑀𝑧
𝑖𝑗

)2
}

, (8)

where 𝑔𝛼 𝛼𝑖𝑗 = ⟨𝑆𝛼𝑖 𝑆
𝛼
𝑗 ⟩ is the real-space two-point spin correlator be-

tween spins at sites 𝑖 and 𝑗, and 𝑀𝛼
𝑖𝑗 = 1

2 (⟨𝑆
𝛼
𝑖 ⟩ + ⟨𝑆𝛼𝑗 ⟩) is the static

magnetism [28]. The two-tangle is the sum of concurrences squared

𝜏2 =
∑

𝑖≠𝑗
𝐶2
𝑖𝑗 . (9)

This formulation is useful because the ratio 𝜏2∕𝜏1 gives the fraction of
a system’s entanglement that is pairwise [29].

The requisite 𝑔𝛼 𝛼𝑖𝑗 = ⟨𝑆𝛼𝑖 𝑆
𝛼
𝑗 ⟩ can be extracted from neutron scattering

which may require polarized experiments). Note however that a lattice
verage can severely affect the ability to measure 𝜏2 for 2D and 3D

lattices, where the sum over sites can mask large individual concur-
rence values in e.g. disordered systems [30]. Additionally, quantum

onogamy when there are several neighbors for each site can result in
he concurrence in each bond not being witnessed due to the threshold
ot being exceeded despite a fuly quantum state. Thus the two-tangle
ay be only experimentally useful for dimer or one-dimensional spin

ystems.

3. Data analysis protocol

In this section we outline a step-by-step procedure for extracting
uantum entanglement from neutron scattering data. Because it is
he most involved, we begin with the procedure for calculating nQFI,
hich then serves as a template for other methods of computing
ntanglement.

Quantum Fisher information

The workflow for converting a neutron scattering signal to a quan-
tum entanglement bound is shown in Fig. 1. Eq. (2) for QFI is directly
related to the neutron structure factor 𝑆𝛼 𝛼(𝐐, 𝜔). However, a real
neutron scattering experiment measures not 𝑆 (𝐐, 𝜔) directly, but the
𝛼 𝛼
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Fig. 1. Workflow for calculating nQFI from neutron scattering data. The greatest
xperimental effort is converting 𝑑2𝜎

𝑑 𝛺 𝑑 𝜔 to 𝑆𝛼 𝛼 (𝐐, 𝜔) (Eqs. (10) and (11)).

magnetic differential cross section
𝑑2𝜎
𝑑 𝛺 𝑑 𝜔 =

𝑘𝑓
𝑘𝑖
𝑁

( 𝛾 𝑟0
2
𝑔 𝑓 (𝐐)

)2
𝑒−2𝑊 𝑆̃(𝐐, 𝜔) (10)

[31] where 𝑁 is the number of magnetic atoms in the beam, 𝑘𝑖 and
𝑓 are the incident and scattered neutron wavevectors, 𝛾 𝑟0 = 0.539 ×
0−14 m is a fixed value based on fundamental constants [31], 𝑔 is the 𝑔-
actor, 𝑓 (𝐐) is the magnetic form factor, and 𝑒−2𝑊 is the Debye–Waller
actor. 𝑑2𝜎

𝑑 𝛺 𝑑 𝜔 is in units of barn/(steradian⋅meV). Meanwhile, 𝑆̃(𝐐, 𝜔) is
the spin structure factor modified by a polarization factor
̃(𝐐, 𝜔) =

∑

𝛼 ,𝛽
(𝛿𝛼 ,𝛽 − 𝑄̂𝛼𝑄̂𝛽 )𝑆𝛼 𝛽 (𝐐, 𝜔) (11)

where 𝑄̂𝛼 and 𝑄̂𝛽 denote the projection of normalized scattering vector
along the Cartesian axes 𝛼 , 𝛽 ∈ {𝑥, 𝑦, 𝑧}. Thus, to obtain 𝑆𝛼 𝛼(𝐐, 𝜔),

ne must convert the data to absolute units, exclude any non-magnetic
cattering (e.g. phonon scattering or background artifacts), and correct
or all the prefactors in Eq. (10). 𝑆𝛼 𝛼(𝐐, 𝜔) used for entanglement

witnessing is thus in units of 1/energy (usually meV−1) per magnetic
on.

The explicit data analysis protocol for evaluating QFI from neutron
scattering data is as follows:

1. Isolate magnetic scattering by subtracting phonon scattering,
sample holder scattering, etc.

2. Correct for the magnetic form factor and 𝑔-factor (and Debye–
Waller factor if necessary, but this effect is weak at low |𝑄| and
low temperatures and can often be neglected).

3. If unpolarized neutron scattering is measured, correct for the
polarization factor (𝛿𝛼 𝛽 − 𝑄̂𝛼𝑄̂𝛽 ).
Note that for isotropic magnetic systems (where the anisotropy
is small enough to be neglected), this step is simplified as
𝑆𝑥𝑥(𝐐, 𝜔) = 𝑆𝑦𝑦(𝐐, 𝜔) = 𝑆𝑧𝑧(𝐐, 𝜔) = 1

2 𝑆̃(𝐐, 𝜔), and the po-
larization factor is replaced by a factor of two. In anisotropic
systems the individual polarization channels must be measured
separately, see Section 5.

4. Normalize data to absolute units, effectively determining 𝑁 in
Eq. (10). Many methods will provide such normalization, see
Ref. [31]. However, one must ensure the sum rule for spin length
𝑆

∫ ∞
−∞ 𝑑 𝜔 ∫𝐵 𝑍 𝑑𝐐

∑

𝛼 𝑆𝛼 𝛼(𝐐, 𝜔)
∫𝐵 𝑍 𝑑𝐐

= 𝑆(𝑆 + 1) (12)

is satisfied. This is especially important if one is dealing with
significant orbital contribution to the ground state doublet and
treating it as effective 𝐽 = 1∕2 (e.g. Yb3+ in KYbSe2 [7]). Then to
get an accurate QFI bound, the data should be normalized such
that Eq. (12) is consistent with 𝑆 = 1∕2 moments. This is done
either by (i) normalizing the full Brillouin zone scattering (if
available) to Eq. (12), or (ii) dividing the normalized scattering
by the 𝑔-tensor, as 𝐽𝛽 = 𝑔𝛼 𝛽𝑆𝛼 where 𝑔𝛼 𝛽 are elements of
the 𝑔-tensor. In the second case, one must remove the 𝑔 from
Eq. (10).
3 
5. Remove or mask the elastic line scattering. With finite energy
resolution there is always a range of ℏ𝜔 which is dominated
by elastic scattering; it must be removed for an accurate QFI
integral, especially when integrating at a wavevector of a mag-
netic Bragg peak. (For gapless systems this will suppress the QFI
slightly, but it is a necessary cost to avoid overestimating the
lower bound.)

6. Numerically evaluate the integral in Eq. (2) up to the bandwidth
of the magnetic scattering signal.

Two final things to keep in mind are (i) QFI can be evaluated for
any wavevector 𝐐, but to get the highest bound on entanglement one
hould choose 𝐐 such that nQFI is maximal, typically where there is
iverging intensity in the inelastic channel. (ii) QFI should be evaluated
or a single component 𝛼 ∈ {𝑥, 𝑦, 𝑧} rather than summing them, as QFI
s a bound in Eqs. (1) and (2) to entanglement depth is only defined

for a single operator 𝑆𝛼(𝐐).

One and two-tangles

The one-tangle in Eq. (7) is computed by first calculating the static
magnetic moment ⟨𝑀𝛼⟩, and correcting for the 𝑔-factor as ⟨𝑀𝛼⟩ =
𝑔𝛼 𝛼⟨𝑆𝛼⟩. This is done either (i) by doing a magnetic refinement, or
(ii) by summing the elastic magnetic scattering. The former is usually
more precise but is only sensitive to long range order (not static

agnetic disorder). The latter is sensitive to static disordered spins,
ut requires an absolute unit conversion via steps 1–4 of the QFI

protocol above and is typically less precise (absolute unit conversions
typically carry 20% uncertainty due to experimental limitations [31]).
or systems with orbital contributions to magnetism, the one-tangle can
e calculated as a fraction of the total effective moment (as determined
y e.g. susceptibility or crystal field fits) [7].

The two-tangle in Eq. (9) is calculated from the spin correlations,
hich are extracted from neutron spectroscopy either through Fourier-

ransforming to real space [3] or via sum rule analysis [32]. Either
ethod requires following steps 1–4 of the QFI protocol above to

obtain 𝑆𝛼 𝛼(𝐐, 𝜔) in absolute units. The Fourier transform route requires
measuring a full Brillouin zone of scattering, whereas the sum rule
nalysis method does not—but the sum rule analysis assumes perfectly
sotropic interactions, which is not always true. Using either method,
2 is experimentally measurable using spectroscopy.

4. Interpretation

Each entanglement witness requires care in its interpretation. A
first and important note is that the entanglement witnesses discussed
ere only probe entanglement between local spin degrees of freedom,

not itinerant spins. (The QFI workflow can, however, be extended
to electronic systems; see Refs. [8,10,23].) Nor do they probe all
forms of entanglement possible between local spins. Each witness can
nevertheless reveal important information:

4.1. Quantum Fisher information

As a measure of entanglement depth, large QFI values can be used
o rule out trivial un-entangled phases (as was done e.g. in triangular
YbSe2 [7]). This is useful for distinguishing spectroscopy signals from
lassical glassy ground states and quantum disordered ground states,
oth of which have broad, diffuse features [33].

However, the inverse is not true: a low nQFI does not rule out highly
ntangled behavior. Because the witness in Eq. (5) is a lower bound, one

cannot infer anything about the underlying quantum state if nQFI ≤ 1.
For example, some topological phases are highly-entangled but require
a nonlocal operator to witness rather than  = 𝑆𝛼(𝐐) [34]. (In such
cases one would expect intensity to be distributed over a large region
of reciprocal space.) So just like one order parameter cannot witness all
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phase transitions, one entanglement witness cannot witness all types of
ntanglement [10].

Many have noted the connection between multipartite entangle-
ment and quantum criticality [5,8,35–41], and QFI especially is often
sed as a theoretical signature of quantum phase transitions [5,8,

36–39]. Moreover, QFI has also been shown theoretically to have
special scaling behavior with temperature around quantum critical
points when  is related to a relevant order parameter [5,42], and
ariations of QFI (e.g., quantum variance, where the t anh function
n Eq. (2) is replaced by a Langevin function [43]) have been used

to explicitly define a quantum critical fan [44]. Thus a key use of
spectroscopic multipartite witnesses will be to evaluate the presence
of, and a material’s proximity to, a quantum phase transition. However,
similar to the discussion above, not all quantum phase transitions are
visible to QFI based on 𝑆𝛼(𝐐), c.f. Cs2CoCl4 [4].

4.2. One and two-tangles

The one-tangle is simple to interpret: a reduced 𝑇 → 0 static moment
indicates quantum entanglement. However, there are three important
warnings in interpreting the one-tangle. The first is that the one-tangle
does not reveal what kind of entanglement is present: it could be trivial
singlet pair formation, or an exotic long ranged entangled phase. Both
give large 𝜏1 values. Second, 𝜏1 is only defined for 𝑆 = 1∕2. For larger
pins, other mechanisms like multipolar order or single-ion singlets can
educe the order in the dipolar sector, but not because of entanglement
ith neighboring spins. Third, one must be careful not to conflate lack

of long range ordered moment with a lack of static magnetism. Glassy
or hidden order states [45] have static spins, even though no magnetic
Bragg intensities are measurable. If these scenarios are not ruled out,
one-tangle serves as an upper bound on the entanglement between one
spin and the rest of the system.

The two-tangle is easier to interpret, as nonzero two-tangle along
a given spatial direction indicates pairwise entanglement. As noted
above, the ratio 𝜏2∕𝜏1 is an explicit measure of the fraction of en-
anglement that is pairwise [29]. However, for types of order where
ntanglement does not follow a specific spatial direction, the lattice
verage inherent in spectroscopy can suppress the measured 𝜏2 to zero,
ven though microscopically nonzero concurrences may abound [30].

Thus the two-tangle may only be useful for one-dimensional systems.
Even so, it can prove a useful one as shown by examples 1 and 2
below.

4.3. Combining multiple witnesses

The greatest power in determining a material’s quantum ground
state is in combining multiple entanglement witnesses with conven-
tional analysis (e.g., diffraction and refinement). Table 1 shows inter-
pretations of combinations of nQFI, 𝜏1, and 𝜏2. The combination of
𝜏1 and nQFI is especially powerful: if both are large, this indicates a
strongly fluctuating phase with entanglement distributed through the
lattice. Meanwhile, if both are small, this points to a conventional
magnetic state with a low degree of entanglement. Furthermore, if nQFI
is large and 𝜏1 is small, this indicates an ordered magnetic state near
an instability—as when a goldstone mode has diverging intensity, or
when a system is close to a phase boundary with a competing order.
Systematically probing many entanglement witnesses can offer valuable
model-independent constraints on a given system’s ground state.

As the field of spectroscopic entanglement witnesses continues to
volve, there will surely be additional constraints provided on the

possible ground states. We hope that Table 1 is merely the beginning
of using entanglement witnesses to probe the unknown in quantum

aterials.
4 
Table 1
Interpretations of combinations of nQFI, 𝜏1, and 𝜏2 entanglement witnesses. 𝜏2 is mainly
useful for identifying dimer singlets which are periodic in the lattice. The dash—
indicates when 𝜏2 is excluded from the analysis.

nQFI 𝜏1 𝜏2 Interpretation

large large – extended entangled quantum state
small large large pairwise dimer entanglement
small large – local singlet formation or entanglement

inaccessible to two-point correlations
large small – fluctuating magnetism close to instability
small small – conventional low-entangled state

5. Planning the experiment

The intermediate step to calculating entanglement from neutron
data is calculating 𝑆𝛼 𝛼(𝐐, 𝜔). Therefore the experiment must be run
with an eye toward background reduction (from the sample envi-
ronment, sample mount, or the sample itself), eliminating phonons
from the spectra (either through first principles or phenomenological
modeling), and removing the tails of elastic line scattering from the
inelastic channels. In addition, the experiment must have a means
of normalizing the data to absolute units—such as vanadium stan-
ard measurements, normalization to phonons, or elastic incoherent
cattering.

It is also important to have very good energy resolution around
ow-energy features at low temperature. This is because the hyperbolic
angent in Eq. (2) is sensitive to lower and finer energy features

as 𝑇 → 0. If these features are experimentally broadened in either
momentum or energy, the measured QFI will be suppressed relative
to the theoretical QFI without broadening. Furthermore, elastic signal
such as incoherent scattering can mask the low energy features if the
resolution is not good enough; these features may be important at low
temperatures where the entanglement is strongest. As a general rule,
one is only sensitive to temperatures such that 𝑘𝐵𝑇 > 𝛥ℏ𝜔 (where 𝛥ℏ𝜔
is the energy resolution).

Another important aspect of experimental planning is correcting for
the polarization factor. As mentioned above, this is trivial for isotropic
systems (at least above the ordering temperature), but for anisotropic
ystems a polarized spectrum should be measured. This can either be
one with a spin-polarized time of flight spectrometer [46,47] or – if

one knows exactly what wavevector to probe – with spin polarized
triple axis spectrometry [48]. Alternatively, computational modeling
an be used to correct for the polarization factor, see Ref. [4]. (If no

means of correcting the polarization factor is available, the system must
be treated as isotropic: the polarization factor will simply suppress
the scattering along certain wavevectors, and the lower bound will be
lower than the ideal QFI bound on entanglement, see e.g. Ref. [4] and
example 3 below.)

The magnetic form factor is another experimental issue that must be
andled carefully. Often an isotropic form factor is a reasonable approx-
mation for low-|𝑄| scattering [49]. But in some cases (e.g., 𝑑-electron
ompounds with orbital order [50] or hybridization effects [51]) an

anisotropic form factor is necessary to account for covalent or orbital
ffects [52].

It is also important to note that all of these entanglement witnesses
ssume well-defined spin degrees of freedom. If excited orbital or
rystal field states are observable in the spectroscopy, they must be
xcluded from the analysis. If the total quantum number 𝑆 is not
onstant across the relevant bandwidth, it is not valid to apply an
ntanglement witness using the low-energy 𝑆 value.

Finally, it is often advantageous to collect a full magnetic Brillouin
zone for this analysis. This is for three reasons: first, it allows one
to cross-check the normalization to see that the sum rule Eq. (12) is
satisfied. Second, it allows one to calculate QFI for any wavevector
𝐐, to ensure that the maximal lower bound on entanglement depth
is reported. Third, when the full Brillouin zone is measured, other
quantum information quantities become available (e.g., real-space non-
commutativity [53] or quantum coherence [54]).
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6. Examples

Trivial un-entangled examples:

As a preliminary to the experimental examples, we first calculate
the quantum entanglement for two trivial theoretical examples: a non-
interacting 𝑆 = 1∕2 paramagnet, and a one-dimensional ferromagnet.
Both of these show no entanglement.

Non-interacting 𝑆 = 1∕2 paramagnet: A non-interacting 𝑆 = 1∕2
paramagnet is an array of spins which are all in the superposition state
|𝜓⟩ = 1

√

2
(|↑⟩± |↓⟩), where the quantization axis is randomized on each

site. In the local coordinate system, each spin thus has ⟨𝑆𝑥𝑗0 ⟩ = ±1∕2,
⟨𝑆𝑦𝑗0 ⟩ = ⟨𝑆𝑧𝑗0 ⟩ = 0, resulting in a vanishing one-tangle 𝜏1 = 0. The
two-tangle 𝜏2 = 0 as there is no correlation between any spins and
all 𝑔𝑖𝑗 = 0. The pure state QFI meanwhile can be directly calculated
from Eq. (1), which gives nQFI = 1 for all polarization channels.
(Although without interactions this system has no energy scale, this is
consistent with the spectroscopic QFI: The neutron cross section of an
ideal paramagnet is 𝑆𝛼 𝛼(𝐐) = 1

3𝑆(𝑆 + 1) = 1
4 [21], which via Eq. (6)

gives nQFI[𝐐, 𝑇 = 0] = 1 assuming all spectral weight is inelastic—an
admittedly ill-defined concept for a system with no energy scale.) Thus
no entanglement is witnessed by any measure, as the individual spins
do not interact with each other. Note that for 𝑇 > 0 nQFI → 0 as 𝑘𝐵𝑇
will exceed the (quasi)elastic energy band of the paramagnet.

One-dimensional ferromagnet: The one-dimensional Heisenberg ferro-
magnetic spin chain is a textbook spin wave problem, and the linear
spin wave theory 𝑇 = 0 neutron cross section for spins polarized along
𝑧 is given by

𝑆𝑥𝑥(𝐐, 𝜔) = 𝑆𝑦𝑦(𝐐, 𝜔) = 𝑆
2
𝛿(ℏ𝜔 − ℏ𝜔𝐐) (13)

where ℏ𝜔𝐐 is the spin wave dispersion [52]. The one-tangle 𝜏1 is
calculated from the static ordered moment ⟨𝑆𝑧⟩ = 1

2 for the ideal
ferromagnet [52], which via Eq. (7) gives 𝜏1 = 0. The two-tangle is
calculated from the Fourier-transform of energy-integrated Eq. (13),
and yields 𝑔𝑧𝑧𝑖𝑗 = 1

4 and 𝑔𝑥𝑥𝑖𝑗 = 𝑔𝑦𝑦𝑖𝑗 = 0, which via Eq. (8) gives
𝐶𝑖𝑗 = 0 for all 𝑖 and 𝑗, and thus 𝜏2 = 0. Meanwhile, the nQFI for
𝑆 = 1∕2 and 𝑇 = 0 via Eqs. (6) and (13) is nQFI[𝐐, 𝑇 = 0] = 1, which
witnesses no multipartite entanglement. Although this model system is
one-dimensional and would have no static magnetic order at 𝑇 > 0, the
same conclusions generically hold for ordered ferromagnets in higher
dimensions where Eq. (13) describes the magnon intensity.

For both the ideal paramagnet and the 1D Heisenberg ferromagnet,
neither one-tangle nor two-tangle give any entanglement, and zero
temperature nQFI is precisely one (a consequence of inelastic intensity
equally distributed through the Brillouin zone). Although these two the-
oretical examples have very different Hamiltonians, they host product
ground states with no witnessed entanglement.

We now turn to more complex examples with experimental data:

Experimental example 1: Copper nitrate

Copper nitrate, Cu(NO3)22.5D2O, is a well-studied dimer system [55]
where 𝑆 = 1∕2 copper ions form quantum singlets at the lowest
temperatures (Fig. 2) and have well-defined excitations measured by
neutron scattering [32,56]. It serves as an instructive example for
how entanglement witnesses give a unique and clear perspective of its
quantum ground state.

6.0.1. Theoretical values
For comparison, let us first calculate the entanglement values for

the idealized theoretical dimer. The theoretical structure factor for an
isolated Heisenberg 𝑆 = 1∕2 dimer at 𝑇 = 0 is

1 2
𝑆𝛼 𝛼(𝐐, 𝜔) = 2
sin (𝐐 ⋅ 𝐝∕2) 𝛿(ℏ𝜔 − 𝐽 ) (14)

5 
Fig. 2. Entanglement on Copper Nitrate measured by neutron scattering. Panel (a)
shows the crystal structure [55], where copper atoms form dimers. Panel (b) shows
the nearest neighbor pairwise correlation measured in [32]. Panel (c) shows the
0.3 K inelastic spectra measured at the dimer distance from Ref. [56], with calculated
nQFI=2.3(5).

[57] where 𝐝 is the intra-dimer separation vector, 𝛿(𝑥) is the Dirac delta
function, and 𝐽 is the intra-dimer exchange energy. The one-tangle is
trivial because there is no static magnetism, and so 𝜏1 = 1.

The two-tangle can be derived from the Fourier transform of Eq. (14),
(or a simple first principles calculation) which gives 𝑔𝑥𝑥1,2 = 𝑔𝑦𝑦1,2 = 𝑔𝑧𝑧1,2 =
−1∕4, which via Eq. (8) gives 𝐶1,2 = 1 and thus 𝜏2 = 1 via Eq. (9).

The Quantum Fisher Information is calculated from the maximum
intensity in Eq. (14), 𝑆𝛼 𝛼(𝐐, 𝜔) = 1

2 at the intradimer separation
wavevector 𝑄 = 𝜋

𝑑 , which via Eq. (6) yields nQFI = 2 at 𝑇 = 0, which
witnesses bipartite entanglement. If one accounts for the coupling
between dimers in copper nitrate via perturbation theory, this theoret-
ically increases the intensity at 𝑄 = 𝜋

𝑑 by approximately 1.163 [56]
for a theoretical nQFI ≈ 2.326. This slight increase witnesses three-
partite entanglement, indicating more extended entanglement through
the lattice when dimers are coupled.

6.0.2. Experimental values
We begin with the simplest witness: one-tangle. Because there is no

magnetic order at the lowest temperatures in copper nitrate [58], the
one-tangle is simply 𝜏1 = 1.

The two-tangle can be calculated from concurrence (which has been
done in Ref. [59] from the spin correlations extracted from sum rule
analysis [32]). Because of experimental artifacts and uncertainties, the
measured dimer spin correlations plotted in Fig. 2(b) actually exceed
the physical bound |⟨𝐒𝑖 ⋅ 𝐒𝑗⟩| ≤ 3∕4 at low temperatures, which via
Eqs. (8) and (9) give an unphysical 𝜏2 > 1. We estimate the real 𝜏2
by normalizing the largest measured |⟨𝐒𝑖 ⋅ 𝐒𝑗⟩| to be 3∕4, which gives
𝜏2 = 0.93(6) at 0.3 K. This value should have larger uncertainty in reality
because of the ad-hoc normalization, but it is clearly something close
to 1.

Finally, the Quantum Fisher Information is calculated from the energy
dependent scattering at 𝑄 = 𝜋

𝑑 (dimer coupling wavevector) reported
in Ref. [56], plotted in Fig. 2(c). Using the absolute unit conversion in
Ref. [32], we subtract the background as in Ref. [56] and calculate
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an nQFI = 2.3(5) at 0.3 K via Eq. (6). This witnesses ≥ 2-partite
entanglement, and is consistent with ≥ 3-partite entanglement. This
value is within error bars of the 2.326 theoretical nQFI value. The
python code for the above data analysis is found at .
Interpretation: The experimental ratio 𝜏2∕𝜏1 = 0.93(6) means that al-
most all the entanglement is pairwise [29], and is very close to the theo-
retical 𝜏2∕𝜏1 = 1, consistent with dimer formation (see Section 2). Also,
the nQFI ≥ 2 means that QFI witnesses more than just bipartite entan-
glement, consistent with coupling between the dimers for a collective
quantum state. Thus, if nothing were known about Cu(NO3)22.5D2O
other than the entanglement witnesses reported above, we could confi-
dently conclude that the ground state involves coupled pairwise dimer
(or valence bond) formation.

Experimental example 2: KCuF3

KCuF3 is a quasi-one-dimensional antiferromagnetic spin chain sys-
tem where, due to orbital order, 𝑆 = 1∕2 copper atoms interact strongly
along the 𝑐 axis and weakly in the 𝑎𝑏 plane [60]. The entanglement wit-
nesses of KCuF3 were analyzed in detail in Ref. [3]; here we summarize
the results.

We calculate the one-tangle from the ordered moment refined from
diffraction. KCuF3 has a 4 K ordered moment of 0.49(7) 𝜇𝐵 where
the order parameter is saturated from an ordering temperature 𝑇𝑁 =
39 K [61]. Assuming 𝑔 = 2.0, this means ⟨𝑆𝑧⟩ = 0.24(3) and the one-
tangle is 𝜏1 = 0.76 ± 0.14. This is close to 1, indicating strong quantum
entanglement. We note that this is a somewhat conservative estimate,
and that slightly higher 𝜏1 values can be obtained using experimental
𝑔 factors [62].

The two-tangle is derived by Fourier-transforming the energy-
integrated neutron spectra (from in Fig. 3) to get the spin correlations as
a function of distance along the chain. At the lowest measured tempera-
ture 6 K, 𝜏2 = 0.16 ± 0.03. Comparison to Density Matrix Renormalization
Group (DMRG) simulations showed this value is heavy influenced by
experimental artifacts [3]; the 𝑇 = 0 theoretical simulations produce
the value 0.256.

The Quantum Fisher Information we calculate as a function of tem-
perature by using Eq. (6) with 𝑆 = 1∕2, evaluated at 𝑄 = 𝜋 along
the chain (where the intensity is strongest). The results are shown in
Fig. 3. At 𝑇 = 6 K, nQFI= 3.72 ± 0.14, witnessing at least four-partite
entanglement per spin. Comparison to Bethe Ansatz calculations [63]
on a 500-site chain shows this value would be around 20% higher
without experimental resolution broadening [3].

Interpretation: All three entanglement witnesses give some appreciable
entanglement. The ratio 𝜏2∕𝜏1 = 0.21(5) (or using the DMRG 𝜏2 result,
𝜏2∕𝜏1 = 0.34(6)) shows that a minority of entanglement is pairwise.
Meanwhile, the large nQFI shows appreciable entanglement along the
chain. All this is consistent with the expected behavior of a 1D Heisen-
berg antiferromagnet, which is known theoretically to have a highly
entangled ground state [64].

Furthermore, because of the noted connection between QFI and
quantum criticality, the large nQFI (i.e., witnessing more than bipartite
entanglement) indicates that KCuF3 is indeed quantum critical, as
scaling analysis also shows [65].

Experimental example 3: NiPS3

We turn to our third experimental example NiPS3 to illustrate (i)
how resolution and domain effects can impact witnessed entanglement,
and (ii) how magnons alone can produce nontrivial QFI.

NiPS3 is a 𝑆 = 1 quasi-2D honeycomb van der Waals antiferromag-
net, which orders in a stripe pattern [66]. It has a strongly reduced
magnetic moment, and its excitations include anomalous intensity at
low energies which linear spin wave theory (LSWT) models fail to
account for [67,68]. Because NiPS is a 𝑆 = 1 system, the one and
3

6 
Fig. 3. Neutron spectra of spin chain KCuF3 (a)–(b), DMRG simulation of the 1D
Heisenberg chain (c)–(d), and calculated nQFI (e). Data from Ref. [3]. Each integer
𝑚 nQFI indicates ≥ 𝑚 + 1 partite entanglement.

two-tangles (at least as formulated above) are not applicable and we
focus on QFI.

Using the data reported in Ref. [68], we calculate the nQFI using
Eqs. (2) and (5), choosing 𝐐 = (1∕2, 5∕2, 0) as the wavevector of greatest
experimental intensity, shown in Fig. 4. (Note that the data must be
first normalized to intensity per Ni ion, whereas data in Ref. [68] were
reported as intensity per unit cell.) Because the measured data are
unpolarized, we assume isotropic spins and 𝑆𝛼 𝛼(𝐐, 𝜔) = 1

2 𝑆̃(𝐐, 𝜔). Thus
the equation relating nQFI to 𝑆(𝐐, 𝜔) for NiPS3 is

nQFI(𝐐) = 1
2 ∫

∞

0
d(ℏ𝜔)

[

t anh
(

ℏ𝜔
2𝑘𝐵𝑇

)

(

1 − 𝑒−ℏ𝜔∕𝑘𝐵𝑇 ) 𝑆̃(𝐐, ℏ𝜔)
]

,
(15)

where the prefactor is from Eqs. (2), (3), and (5) with 𝑆 = 1, and
the isotropic polarization approximation. The experimental NiPS3 data
[ Fig. 4(a)] give nQFI = 1.09 ± 0.12 which agrees with the LSWT
model calculation nQFI = 1.03 [ Fig. 4(b)]—just above the threshold
for witnessing nontrivial entanglement, but within uncertainty of wit-
nessing no entanglement. However, examining the LSWT simulations
with SpinW [69] show that this value would be ten times larger without
resolution and experimental effects.

NiPS3 is actually a slightly distorted honeycomb lattice with three
domains which are averaged in a real experiment [68]. Furthermore,
the spectrometer 𝐐-resolution effects are significant at the bottom of
the dispersion where the intensity is strongest [68]. Although these
effects are unavoidable experimentally, they can be un-done in sim-
ulations. In Fig. 4(c) we turn off the finite momentum resolution, and
find the nQFI nearly doubles to 1.81. In Fig. 4(d) and (h) we separate
two domains, and find that in domain 1 the nQFI doubles again to
3.56—crossing the threshold into witnessing four-partite entanglement.

This QFI analysis assumed isotropic polarization scattering. In re-
ality, because of spin-ordering and planar anisotropy, the polarization
channels are not identical. In Fig. 4(e)–(g) we plot the different po-
larization channels 𝑆 , 𝑆 , and 𝑆 . In this case, we find that the
𝑥𝑥 𝑦𝑦 𝑧𝑧
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Fig. 4. NiPS3 neutron spectra and Quantum Fisher Information evaluated at 𝐐 = (1∕2, 5∕2, 0) for various LSWT models. Panel (a) shows the experimental spectra and nQFI.
Panels (b) and (c) show the domain-averaged LSWT with and without 𝑄-resolution broadening (see Ref. [68]). Panels (d)–(g) and (h)–(k) show the spectra from domains 1 and
2 respectively, both with the polarization factor (top) and the individual polarization channels 𝑆𝑥𝑥(𝑄, 𝜔), 𝑆𝑦𝑦(𝑄, 𝜔), 𝑆𝑧𝑧(𝑄, 𝜔). Note that measuring domain 1 unpolarized would
yield nQFI > 1 with ≥ 2-partite entanglement; but resolving 𝑆𝑦𝑦(𝑄, 𝜔) yields the largest 𝑆𝑦𝑦(𝑄, 𝜔) > 3, indicating ≥ 4-partite entanglement. However, experimental effects suppress
the nQFI just to the boundary of being able to witness nontrivial entanglement. All LSWT QFI calculations assume 𝑇 = 0.
Fig. 5. NiPS3 LSWT entanglement at 𝐐 = (1∕2, 5∕2, 0) and 𝑇 = 0 as the Hamiltonian is
modified. As 𝐽3 increases relative to the experimental fitted 𝐽 0

3 , the nQFI entanglement
increases. This is because the gap relative to the bandwidth decreases, increasing the
intensity at 𝐐 = (1∕2, 5∕2, 0), and enhancing the nQFI.

𝑆𝑦𝑦 channel in domain 1 (where the softest and most intense oscil-
lation mode appears) gives nQFI = 11.08, which is three times the
nQFI from the raw unpolarized spectrum, witnessing at least 12-partite
entanglement in NiPS3.

We can go a step further and then modify the Hamiltonian by
increasing the third neighbor exchange 𝐽3 (the largest exchange term
in the Hamiltonian) and calculate the entanglement from LSWT, shown
in Fig. 5. Across all sectors, but especially for 𝑆𝑦𝑦 in domain 1, enlarg-
ing 𝐽3 increases the QFI. This is because increasing 𝐽3 increases the
magnon bandwidth, decreasing the gap size relative to the bandwidth,
increasing the intensity at the bottom of the dispersion, and increasing
the witnessed QFI. On a very coarse level, this is consistent with QFI
as a witness of quantum critical behavior: it is especially sensitive to a
buildup of low-energy density of states at a particular wavevector.

A caveat to all this is that the LSWT model used here fails to
completely match NiPS3 experiments [68]. Nevertheless, the analysis
above shows that for a spectrum like NiPS3, resolution effects, domain
averaging, and the polarization factor each individually suppress the
nQFI by a factor of two or more—such that together they suppress
the measured nQFI by a full order of magnitude (nQFI = 1.09 ex-
perimentally vs nQFI = 11.08 ideally). It also shows that nontrivial
QFI values do not necessarily indicate non-magnon behavior. LSWT,
although often thought of as a semiclassical method as it leaves out
important corrections, is a quantum theory of noninteracting bosons
(magnons). It can thus capture entanglement between spins—but not
effects on the entanglement driven by magnon-magnon interactions,
such as quantum renormalization, decay, etc. (Put another way, the
very large entanglement depth is a consequence of antiferromagnetism
7 
where the Bogoliubov transformation mixes the plane-wave states that
spread over a wide number of sites on the different magnetic sublat-
tices.) The example of NiPS3 also shows that as magnon dispersions
approach zero energy, the entanglement can grow to large values,
consistent with antiferromagnetic fluctuations increasing as mode gaps
go to zero. Thus even conventional magnon systems can yield large and
nontrivial multipartite entanglement.

7. Conclusion

We have described in detail the definitions and methodology for
three entanglement witnesses applicable to magnetic neutron scatter-
ing. We focus on these three not because they are the only or most
important witnesses, but because (a) they have been experimentally
validated and their pitfalls are understood, (b) they serve as a helpful
introduction to the field, and (c) the concepts we describe (especially
the experimental considerations) apply to other entanglement measures
as well. As far as the experimentalist is concerned, several features are
in common between all spectroscopic entanglement witnesses: (1) the
importance of an absolute unit scale for scattering intensity, (2) the
importance of correcting for and eliminating experimental artifacts, and
(3) the importance of using multiple entanglement witnesses to give a
more complete picture of a system’s underlying quantum state.

We anticipate that many more experimental entanglement witnesses
will emerge as the field progresses. However the methodology we
outline here serves as an introduction to the field of spectroscopic
entanglement witnesses and a template for other witnesses. As these
examples show, there is a wealth of quantum information embedded
in the spin correlation functions measured by spectroscopy; and with
the right tools, such information can be experimentally accessed.
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