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Reconstructing the spatial structure of quantum correlations in materials
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Quantum correlations are a fundamental property of quantum many-body states. Yet they remain experimen-
tally elusive, hindering certification of genuine quantum behavior, especially in quantum materials. Here we
show that the momentum-dependent dynamical susceptibility measured via inelastic neutron scattering enables
the systematic reconstruction of a general family of quantum correlation functions, which express the degree of
quantum coherence in the fluctuations of two spins at an arbitrary mutual distance. Using neutron scattering data
for the compound KCuF3—a system of weakly coupled S = 1/2 Heisenberg chains—and numerically exact
quantum Monte Carlo data, we show that quantum correlations possess a radically different spatial structure
with respect to conventional correlations. Indeed, they exhibit a different emergent length scale—the quantum
coherence length—which is finite at any finite temperature (including when long-range magnetic order develops).
Moreover, we show theoretically that coupled Heisenberg spin chains exhibit a form of quantum monogamy,
with a trade-off between quantum correlations along and transverse to the spin chains. These results highlight
real-space quantum correlators as an informative, model-independent means of probing the underlying quantum
state of real quantum materials.
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I. INTRODUCTION

Quantum superpositions are among the most profound and
fascinating phenomena in nature. They lead to a variety of
quantum correlations, including entanglement [1] and Bell
nonlocality [2], both considered resources in quantum in-
formation processing. Such quantum correlations have been
experimentally demonstrated in systems isolated from their
environment with few degrees of freedom, such as pho-
tons [3,4], atoms [5–7], and superconducting circuits [8,9].
However, quantum materials, which host a wealth of exotic
physical states [10], sit at the opposite end of the many-body
spectrum. Their quantum-mechanical degrees of freedom are
of order Avagadro’s number and interact strongly and locally,
so their physics is very sensitive to the underlying system
geometry. These interacting degrees of freedom produce some
very exotic phenomena, which is why quantum materials
are so intensely studied [10,11]. However, despite receiving
much attention, the underlying quantum states of quantum
materials are often unknown. Certifying the quantum superpo-
sition nature of such systems and understanding the effects of
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geometry and dimensionality of interactions on quantum cor-
relations represent grand challenges for quantum condensed
matter physics, as well as new opportunities to understand the
role of quantum mechanics in macroscopic systems.

Fortunately, quantum information theory offers powerful
tools for probing quantum superpositions in generic systems
in the form of coherence measures [12–15]. Here we focus
on observable-based measures, which probe the coherences
of a quantum state when represented in the eigenbasis of an
observable, i.e., the noncommutativity between the observ-
able and the density matrix. Typically, coherences are studied
via interferometric experiments [14] and provide the basis
of the metrological sensitivity of a quantum state. Unfortu-
nately, interferometry is rarely accessible in the solid-state
context, and the density matrix itself is not accessible either.
However, recent works [16–18] related quantum coherence
measures for quantum states in thermal equilibrium to linear
response functions, which are directly accessible to spectro-
scopic techniques such as light scattering, AC magnetometry,
and inelastic neutron scattering. This link allowed neutron
scattering experiments on quantum magnets [19–21] to re-
construct their quantum Fisher information (QFI) [14,22].
Measurements of QFI associated with order parameters have,
in turn, led to estimates of the entanglement depth, i.e., a lower
bound on the minimal number of entangled degrees of free-
dom in a multipartite entangled state, in the low-temperature
phase of low-dimensional magnets, such as spin chains and
triangular antiferromagnets [20,21,23].

In this work we show that a Fourier analysis of the linear
response function measured in neutron scattering, reweighted
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FIG. 1. Total vs quantum correlations in S = 1/2 Heisenberg
chains. (a) Uncoupled 1D chains and (b) chains subject to interchain
coupling. Total and quantum correlations are widely different at any
finite temperature. Whereas total correlations are enhanced in all
directions when the chains are coupled at fixed temperature, quantum
correlations are redistributed spatially (at low temperatures) due to an
effective form of monogamy (i.e., mutual exclusion). This illustration
depicts a two-dimensional system for clarity, but in the text we
consider a three-dimensional system with chains coupled along both
directions perpendicular to the chains.

by an appropriate quantum filter function, allows one to ex-
tract the full spatial structure of quantum correlations in a
model-free manner (i.e., it is applicable to arbitrarily complex
systems beyond the reach of simulation techniques). Impor-
tantly, as we show in this study, such analysis can reveal
surprising and new information, even for very well studied
models and materials.

Making use of neutron scattering data on the S = 1/2
Heisenberg antiferromagnetic chain system KCuF3 [20,24,25]
and quantum Monte Carlo (QMC) simulations, we show that
these quantum correlation functions share a common spatial
structure, and unlike the ordinary correlation function, they
exhibit an exponential decay at all finite temperatures, with an
emergent quantum coherence length [26] which differs sub-
stantially from the ordinary correlation length. We provide,
therefore, a clear experimental observation of the short-range
nature of quantum correlations at finite temperature, in agree-
ment with recent numerical and analytical results [18,26,27].
We also show numerically that weakly coupled antiferro-
magnetic chains at low temperature exhibit stronger quantum
correlations at short range than strongly coupled chains due to
an effective form of “monogamy” (i.e., mutual exclusion) of
quantum correlations; see Fig. 1 for a sketch summarizing the
main results.

II. THEORY OF QUANTUM CORRELATION FUNCTIONS

Quantum correlation functions can generally be defined
as the difference between two types of correlations that are
classically equivalent and that coincide quantum mechanically
only when the correlated observables commute with the state,
e.g., the statistical correlations of two fluctuating observables,
and the response of an observable to a field coupling to the
other observable. This latter notion coincides with the quan-
tum covariance introduced in Ref. [26], but related quantities
(connected to QFI or the Wigner-Yanase-Dyson skew infor-
mation (SI) [28]) can also be defined.

For a lattice quantum system, we consider local Hermitian
bounded operators Oi, with i being the lattice site index, and
introduce their sum, building up the extensive observable O =∑

i Oi. We then consider the two-site dynamical susceptibility
χ ′′

Oi,Oj
(ω) [29], expressing the out-of-phase variation of the

expectation value of Oi in response to a periodic field oscil-
lating at frequency ω and coupling to Oj . Its mathematical
expression reads χ ′′

Oi,Oj
(ω) = − ∫

dt/h̄ e−iωt 〈[Oi(t ), Oj (0)]〉,
where 〈· · · 〉 = Tr[(· · · )ρ] represents the thermal equilibrium
average at temperature T when ρ = e−βH/Z, with β =
(kBT )−1, H being the system Hamiltonian, and Z being the
partition function. A family of quantum correlation functions
can then be related to the two-site dynamical susceptibility
via an integration over frequency, weighted by an appropriate
quantum filter function h(β h̄ω),

C[Oi, Oj ; h, ρ] = 1

π

∫ ∞

0
d (h̄ω) h(β h̄ω)χ ′′

Oi,Oj
(ω). (1)

For C to be a well-defined measure of quantum coherence,
the function h(x) must satisfy basic mathematical properties
[30–33], namely, h(x) ∼ x when x → 0 and h(x → ∞) = 1;
in this way it acts as a high-pass filter for frequencies h̄ω �
kBT , associated with excitation modes behaving quantum me-
chanically at temperature T . Summing Eq. (1) over the spatial
indices yields a quantum coherence measure associated with
the observable O, I[O; h, ρ] = ∑

i j C[Oi, Oj ; h, ρ]. Notable
special cases include (1) the QFI, I[O; 4hQFI, ρ] = QFI(O; ρ),
for which [16,32,33]

hQFI(x) = tanh (x/2), (2)

where

QFIM[Oi, Oj ; ρ] = C[Oi, Oj ; 4hQFI, ρ]

= 1

π

∫ ∞

0
d (h̄ω) 4hQFI(β h̄ω)χ ′′

Oi,Oj
(ω)

(3)

expresses the quantum Fisher information matrix (QFIM)
[34]; (2) the quantum variance VarQ [17], I[O; hVarQ , ρ] =
VarQ(O; ρ), for which

hVarQ (x) = L(x/2), (4)

where L(x) = coth x − 1/x is the Langevin function and

CovQ[Oi, Oj ; ρ] = C
[
Oi, Oj ; hVarQ , ρ

]

= 1

π

∫ ∞

0
d (h̄ω) hVarQ (β h̄ω)χ ′′

Oi,Oj
(ω) (5)

expresses the quantum covariance CovQ [18,26]; and (3) the
Wigner-Yanase-Dyson SI [28], I[O; hα, ρ] = SIα (O; ρ), for
which

hα (x) = cosh (x/2) − cosh [(α − 1/2)x]

sinh (x/2)
, (6)

where 0 < α < 1 is a parameter that takes the value of
α = 1/2 in the original Wigner-Yanase definition [28], with
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FIG. 2. Total vs quantum correlations in KCuF3. Reconstructed total and quantum correlations [expressed by the quantum covariance
CovQ, Eq. (5)] along the spin chains of KCuF3 at various temperatures, compared with numerically exact QMC data. The error bars represent
one standard deviation uncertainty.

h1/2 = tanh(x/4), and

SIMα[Oi, Oj ; ρ] = C[Oi, Oj ; hα, ρ]

= 1

π

∫ ∞

0
d (h̄ω) hα (β h̄ω)χ ′′

Oi,Oj
(ω) (7)

expresses the skew information matrix (SIM). VarQ and CovQ

can, in fact, be obtained as the average of SIα and SIMα ,
respectively, on the α index since

∫ 1
0 dα hα (x) = L(x/2).

All of the above quantities are intimately linked by the
inequality chain (for α = 1/2) VarQ[O; ρ] � SI1/2[O; ρ] �
QFI[O; ρ]/4 � 2SI1/2[O; ρ] � 3VarQ[O; ρ].

In this work we focus mainly on the quantum covariance
CovQ [18,26]. This definition corresponds to the difference
between static correlations and static response functions
[17,26], and consequently, quantum variance and covariance
can be calculated efficiently with QMC. (The QFI and QFIM,
meanwhile, require instead full reconstruction of the dynami-
cal susceptibility, which is not accessible to QMC directly due
to a notoriously ill-defined analytical continuation of time-
dependent correlations from imaginary to real time [35].)

III. QUANTUM CORRELATION FUNCTIONS
FROM NEUTRON SCATTERING

Inelastic neutron scattering measures the dynamical
structure factor S(Q, ω) related to the momentum-dependent
dynamical susceptibility via the fluctuation-dissipation
theorem χ ′′

μν (Q, ω) = π (1 − e−h̄ωβ )Sμν (Q, ω) [36],
where χ ′′

μν (Q, ω) = − ∫
dt/h̄ e−iωt 〈[Sμ

Q(t ), Sν
−Q(0)]〉, with

μ, ν = x, y, z, and Sμ

Q = N−1/2 ∑
i eiQ·ri Sμ

i is the Fourier
transform of the Sμ

i operators for a lattice with N sites.
If S(Q, ω) is measured across the full Brillouin zone, its
inverse Fourier transform allows one to reconstruct the
two-site dynamical susceptibility and calculate the quantum
correlation functions.

To test this idea, we use the neutron scattering data reported
in Ref. [37] for KCuF3; see Appendix A for details. This
material is an ideal approximation of a system of coupled
Heisenberg S = 1/2 chains [25,38],

H = J
∑

〈i j〉:chains

Si · S j + J⊥
∑

〈lm〉:inter

Sl · Sm, (8)

where Si is a S = 1/2 spin operator at site i; the first sum
runs on nearest-neighbor bonds along the chains, and the
second runs on bonds connecting nearest-neighbor chains to
form a tetragonal lattice. KCuF3 has weak interchain cou-
pling J⊥ = −1.6 meV compared to the in-chain coupling J =
34 meV [39], causing weak long-range Néel order to appear
at a low critical temperature TN = 39 K ≈0.1J . Neverthe-
less, many salient features of the one-dimensional physics
(such as fractional excitations at sufficiently high energy
[25]) are preserved to low T in spite of the long-range
ordering.

In magnetic scattering such as that from KCuF3

the measured dynamical susceptibility is χ̃ ′′(Q, ω) =∑
μ,ν=x,y,z(δμν − Q̂μQ̂ν )χ ′′

μν (Q, ω) [40], where Q̂μ are the
μ = x, y, z components of the normalized scattering vector.
In the Heisenberg (isotropic) limit, the spin components
act identically, and χ̃ ′′(Q, ω) = 2

3

∑
μ=x,y,z χ ′′

μμ(Q, ω).
The two-site spin susceptibility along μ̂, χ ′′

Sμ
i Sμ

j
(ω), is

obtained with the spatial Fourier transform of χ ′′
μμ(Q, ω).

We also define the two-site dynamical susceptibility
χ ′′

i j (ω) = 1
3

∑
μ=x,y,z χ ′′

Sμ
i Sμ

j
(ω), including the prefactor 1/3

for convenience. Thus, the quantum correlation functions
defined above can then be reconstructed, along with the total
correlation function

Ctot (i, j) = 1

3
〈Si · S j〉 = 1

π

∫
d (h̄ω) coth(β h̄ω/2) χ ′′

i j (ω),

(9)

where the coth factor converts dynamic susceptibility back
to S(Q, ω) via the fluctuation dissipation theorem [36]. The
total correlations are expected to exhibit an exponentially
decaying behavior for T > TN , Ctot (i, j) ∼ exp(−|i − j|/ξ ),
with ξ being the correlation length, while the divergence of ξ

at TN entails the appearance of long-range correlations. On
the other hand, the quantum covariance CovQ is expected
to exhibit an exponential decay at any finite temperature,
CovQ(i, j) ∼ exp(−|i − j|/ξQ), with ξQ defining the quantum
coherence length, which is finite at any finite temperature
and coincides with ξ only for T → 0. This behavior for
CovQ was numerically observed via QMC in Refs. [18,26]
and was established as a rigorous result only recently [27].
Yet an experimental measurement of ξQ is still lacking
to date.
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FIG. 3. Quantum coherence length vs entanglement depth.
(a) Quantum coherence length ξQ vs total correlation length ξ as
a function of temperature. (b) Entanglement depth estimated via
the quantum fluctuations of the in-chain staggered magnetization,
namely, 4VarQ(Ms,chain )/N and QFI(Ms,chain )/N . The plot also shows
12VarQ/N , which is an upper bound on QFI(Ms,chain )/N , as well
as the lower and upper bounds on QFI(Ms,chain )/N from the skew
information, 4SI/N and 8SI/N. Both panels compare QMC data and
experimental data for KCuF3. The error bars represent one standard
deviation uncertainty.

IV. QUANTUM CORRELATIONS FOR KCuF3

Figure 2 compares Ctot (i, j) and CovQ for sites i and j be-
longing to the same chain, as reconstructed from the neutron
scattering structure factor of KCuF3 at various temperatures
(T = 6, 50, 75, 150, and 200 K) above and below TN . The
experimental data are compared with QMC data (obtained via
the stochastic series expansion method [41]) for a 10 × 10
array of 100-site spin chains. The experimental results beauti-
fully match the theoretical ones, including a detailed structure
clearly visible at short ranges. The vast difference between the
total correlation length and the emergent quantum coherence
length is apparent: while the total correlations go from expo-
nentially decaying (above TN ) to decaying to a finite value
(below TN ), the quantum covariance clearly remains short
range at all temperatures, with a decay length ξQ significantly
smaller than ξ . This implies that quantum correlations do
not participate in the Néel transition (which is not surprising
because of the classical nature of the finite-temperature phase
transition).

The asymptotic exponential decay is clearly exhibited by
Ctot (i, j) for T > TN and distances exceeding a few lattice
steps. The spatial structure of the quantum covariance is
generally more complex (see Appendix B for an extended
discussion); however, a first exponential decay sets in after
a few lattice steps, and this decay is clearly visible in the
experimental data. We shall focus on the length associated
with this short-range decay in the following and extract it via
a linear-regression (LR) estimator ξQ,LR from a linear fit of the
logarithm of the correlation function or via a second-moment
estimator ξQ,2 (see the next section). Figure 3(a) shows the LR
estimators for ξ and ξQ, comparing experiment and numerical

FIG. 4. Various quantum correlation functions evaluated for
KCuF3 at 6 K. (a) The quantum Fisher information matrix [Eq. (3)],
scaled as QFIM/4. (b) The quantum covariance CovQ [Eq. (5)].
(c) The skew information matrix [SIM; Eq. (7)]. (d) Correlation
function using the simple filter hstep(x) [Eq. (10)]. In all panels the
experimental data are compared with the QMC data for CovQ for ref-
erence. The error bars represent one standard deviation uncertainty.

simulations and exposing the large difference between the two
length scales.

One may wonder how the spatial extension of quantum
correlations relates to multipartite entanglement, namely, the
entanglement depth. In fact, there is a rigorous relation-
ship: the entanglement depth along the chains is bounded
from below by the VarQ density or the QFI density for
the staggered magnetization Ms = ∑

r (−1)rSz
i of the individ-

ual chains, namely, VarQ(Ms,chain )/N = ∑
r (−1)rCovQ(i, i +

r) and QFI(Ms,chain )/N = ∑
r (−1)rQFIM(i, i + r), where

r runs over distances along the chains. Indeed, when
4VarQ/N > k or when QFI/N > k, one can conclude that
spins in each chain exhibit at least (k + 1)-partite en-
tanglement [17,42,43]. Figure 3(b) shows the temperature
dependence of 4VarQ and QFI for KCuF3 compared with the
theoretical results for 4VarQ. Interestingly, the entanglement
depth estimate offered by these quantities is comparable to the
quantum coherence length, rising up to k + 1 = 4. In general,
one should expect quantum correlations to be systematically
longer ranged than the depth of entanglement, given that en-
tanglement is a stronger form of correlation and a state can be
quantum correlated without being entangled [12].

The various quantum correlation functions offered by
Eq. (1) raise the question of whether the quantum coherence
length is uniquely defined or depends on the quantum filter
h. Figure 4 shows that the same exponential decay is exhib-
ited by all quantum correlation functions listed above (CovQ,
QFIM, SIM). In fact, it is a rather robust feature, uniquely
stemming from the high-pass nature of h(x). To emphasize
the universality, we also calculate the most naive correlation
C[Oi, Oj ; hstep, ρ] using a step function filter:

hstep(x) =
{

1 if x/2 � 1,

0 if x/2 < 1 (10)
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FIG. 5. Total vs quantum correlations for coupled Heisenberg chains from QMC data. (a) Second-moment estimator for the in-chain
correlation length ξ2, clearly showing the Néel order. (b) Quantum variance per spin of the in-chain staggered magnetization, 4VarQ(Ms )/N .
(c) Second-moment estimator for the in-chain quantum coherence length ξQ,2. In all panels, the dashed line marks the value of J⊥/J realized
by KCuF3.

in Eq. (1), such that all intensity below h̄ω/2kBT is sup-
pressed. Although this filter function lacks the linear behavior
at small x required for a proper quantum coherence measure,
the plot in Fig. 4(d) shows the same general behavior as the
other quantum correlators. (Furthermore, the step function
resembles filter functions that are naturally applied in neu-
tron scattering experiments; see the discussion below.) Thus,
although the details of the quantum correlators depend on
the filter function, the revealed length scale appears to be
universal. The temperature dependence of all four quantum
correlators is shown in Appendix C.

V. REDISTRIBUTION OF QUANTUM CORRELATIONS
UPON CHANGING THE INTERCHAIN COUPLINGS

We now embed the quantum correlations in KCuF3 within
the broader family of coupled spin chain models described by
the Hamiltonian (8). Using QMC simulations, we calculate
correlations and quantum coherence with varying interchain
coupling J⊥ in order to explore the effect of the dimen-
sionality of interactions. In the case of total correlations, an
increase in |J⊥| at fixed temperature drives the system from
quasi-one-dimensional magnetism towards three-dimensional
magnetism, i.e., towards a regime exhibiting stronger correla-
tions in all spatial directions, both transverse and longitudinal
to the chains. This behavior is clearly exhibited by the second-
moment estimator for the in-chain correlation length

ξ 2
2 = 1

2

∑
r r2|〈Si · Si+r〉|∑

r |〈Si · Si+r〉| , (11)

which allows for a systematic extraction of a typical length
from all the correlation data produced with QMC across the
vast parameter range explored in Fig. 5. As shown in Fig. 5(a),
the total second-moment estimator’s sharp rise upon lowering
the temperature marks the evolution of the Néel temperature
with the interchain coupling [44].

On the other hand, quantum correlations are found
to undergo a rather different fate along the dimensional
crossover of the couplings. Figures 5(b) and 5(c) show the T
and J⊥ dependence of ξQ,2 [defined analogously to Eq. (11) by

substituting |〈Si · Si+r〉| with CovQ(i, i + r)] and
VarQ(Ms,chain )/N (a lower bound on the in-chain entanglement
depth). In contrast to total correlations, quantum correlations
along the chains appear to decrease upon increasing the
interchain couplings at low T (and the Néel transition is
nearly invisible to VarQ(Ms,chain )/N ; see Ref. [33] for further
details on this aspect). The quantum coherence length ξQ is,
in fact, found to increase again at sufficiently low temperature
and sufficiently strong J⊥, but this is an effect driven by the
appearance of thin tails in the quantum correlation function
which have little effect on the integral given by the quantum
variance (Appendix B).

This result suggests that low-temperature quantum corre-
lations in coupled-chain systems exhibit a form of monogamy
[45] since a dimensional crossover in the couplings entails
their spatial redistribution from in-chain to interchain corre-
lations. This result is quite insightful. In general, quantum
correlations are not necessarily monogamous, as they can
also be associated with states possessing multipartite entan-
glement, which can imply an arbitrary number of degrees
of freedom. The above behavior suggests that the Heisen-
berg two-spin couplings are primarily promoting quantum
correlations in the form of two-spin entanglement, presum-
ably via singlet and triplet formation for antiferromagnetic
and ferromagnetic couplings, respectively, which is indeed
monogamous [45,46]. As a result, quantum correlations along
the chains decrease over shorter length scales when the in-
terchain coupling is increased. This result shows that, among
the family of coupled-chain Heisenberg models, quasi-one-
dimensional compounds such as KCuF3 exhibit the strongest
quantum correlations at short distance, whose detection via
neutron scattering is most efficient. (In Appendix B we also
show that interchain quantum correlations do not rise to the
same strength as that of intrachain ones over the range of
interchain couplings explored in this study.)

VI. DISCUSSION

These results have exciting implications far beyond one-
dimensional (1D) spin chains. First, our results on 1D
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chains demonstrate that the spatial structure of quantum
correlations reveals new quantitative information about the
dimensionality of quantum materials, a fundamental prop-
erty inherently linked to quantum statistics and novel phases
of matter. This is important as “low-dimensional materials”
often exist in a three-dimensional host crystal and retain
weak three-dimensional coupling. Our methods give access
to the effective dimensionalities of both quantum and total
correlations, which may be rather different, as our results
clearly show. In this respect, it is important to note that
our quantum correlator analysis is not restricted to neutron
spectroscopy: any momentum-resolved probe of dynamic sus-
ceptibility associated with local Hermitian operators will work
in the same fashion. For instance, quantum correlations in the
charge sector could be probed via x-ray scattering [47] or elec-
tron energy-loss spectroscopy [48], offering complementary
pictures of quantum coherence in a huge variety of quantum
materials.

Second, the quantum correlators are model independent,
which allows precise statements to be made about materials
even in the absence of a tractable theory. Therefore, they
may yield important information about enigmatic condensed
matter states. For example, one could evaluate how the spatial
structure of quantum correlations changes across quantum
phase transitions (as in, e.g., heavy fermion materials [49] and
quantum magnets under fields). Recent works [18,50] showed
that quantum correlations can reconstruct the quantum criti-
cal fan occurring at finite temperatures above such quantum
critical points, thus certifying quantum criticality and delin-
eating the range of genuine quantum critical behavior. Within
the space of coupled spin chains, it would be interesting to
apply the same analysis to systems with frustrated interchain
coupling, such as Cs2CuCl4 [51,52], in order to test whether
frustration can stabilize the intrachain quantum coherence
length compared to the unfrustrated case studied here.

Third, more generally, our results advance the synthe-
sis of condensed matter physics and quantum information.
Specifically, we show that experimental momentum-resolved
dynamical response functions at thermal equilibrium can be
mined for a wealth of many-body quantum information. The
ability to do this for a thermodynamic system at a well-
defined temperature is not shared by many other platforms
for quantum many-body physics. (For example, most quantum
many-body physics simulators based on atomic physics plat-
forms do not operate at thermal equilibrium, or if they do, their
temperature is not easily accessible or cannot easily be held
fixed [53–55]. As a consequence, an analysis similar to ours
cannot be straightforwardly conducted with, e.g., cold atoms.)
Hence, our results indicate a clear path for experiments on
quantum materials to positively contribute to quantum in-
formation theory by revealing the microscopic structure of
quantum correlations in many-body states.

We also note that quantum correlations can be extracted
without Fourier transforming the momentum-resolved spec-
troscopic data. If the integral over frequencies defining
quantum correlations in Eq. (1) is carried out using χ ′′(Q, ω),
one can extract a quantum structure factor and hence a
quantum coherence length by fitting the structure factor
to a resolution-convolved Lorentzian in a way analogous
to how total correlations are conventionally extracted from

energy-integrated Bragg peaks. Although much information
about the detailed spatial dependence of quantum correla-
tions is lost using this procedure, it may prove an easier
experimental way to evaluate a quantum coherence length in
higher-dimensional materials.

On a different note, the fact that the step function filter
captures the same behavior as the other quantum correlators
suggests that approximate results for the quantum length scale
can be experimentally obtained by neutron diffraction meth-
ods. At low temperatures where χ ′′(k, ω) ≈ πS(k, ω), the
filter function hstep(x) can be traded for a physical neutron
transmission filter (e.g., beryllium powder) [56,57], tuning the
incident neutron energy to act as a high-pass filter in energy
transfer h̄ω (absorbing neutrons with large final energy). For
suitable systems (specifically, low-bandwidth materials such
as CuSO4 · 5D2O [58], YbAlO3 [59], and Cs2CoCl4 [21]) it
offers a path to quickly identifying whether a material has
significant quantum correlations.

VII. CONCLUSIONS

We showed how the spatial structure of quantum correla-
tion functions for quantum spin systems can be extracted from
neutron spectroscopy data. The data revealed the existence of
a fundamental length scale of quantum mechanical origin—
the quantum coherence length—limiting the range of quantum
correlations at all finite temperatures, which is wildly different
from the correlation length. Our study also highlighted the
role of dimensionality on quantum correlations, showing that
a stronger coupling between Heisenberg chains leads to a
redistribution of quantum correlations from the chains to the
transverse directions, in contrast to total correlations. As a
consequence, within the family of coupled-chain compounds,
systems close to the one-dimensional limit, such as KCuF3,
exhibit the strongest short-range quantum correlations and the
weakest total correlations. The fact that quantum correlators
enabled new observations—even for a well-studied model
like the one-dimensional Heisenberg chain—indicates that
quantum correlator analysis could be a powerful new way of
assessing the underlying quantum state of a vast number of
quantum materials, both low- and higher-dimensional.
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APPENDIX A: EXPERIMENTAL DATA PROCESSING

The explicit data analysis protocol for extracting real space
quantum correlators is as follows:

(1) Isolate magnetic scattering in a full Brillouin zone.
(2) Correct for the form factor and g factor.
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(3) Correct for the polarization factor (if anisotropic ex-
change exists).

(4) Normalize data to absolute units and convert to χ ′′ [60].
(5) Take the Fourier transform from reciprocal to real

space.
(6) Apply the filter function h.
(7) Analyze the spatial dependence.
Note that steps 5 and 6 can be exchanged for equivalent

results. Note also that step 3 is necessary only if anisotropy
is present such that Sxx �= Syy �= Szz, in which case one must
correct for the experimental neutron polarization factor [40].
This can be done with theoretical modeling [21] or more
generally by measuring polarized neutron scattering. In this
study, we used a highly isotropic system, and thus, step 3 was
not necessary.

All experimental data used in this study were previously
published in [37], which involved a composite dataset from
two different neutron experiments for temperatures T = 75 K
and above: SEQUOIA at the Spallation Neutron Source [61]
for low energy and MAPS at ISIS [62] for high energy. The
data at T = 6 K and 50 K are from ISIS. For the quantum
correlators, we applied the formulas to the data as previously
processed. However, for the conventional correlation length
at T = 6 K, we applied a resolution deconvolution. This is
because KCuF3 at T = 6 K has long-range magnetic order
and a very long correlation length (∼700 sites [63]). Con-
sequently, resolution broadening has to be corrected before
the true long-range correlations will emerge. We did this by
fitting the q = π , T = 6 K, h̄ω = 0 scattering to a Gaussian
function and dividing the Fourier transformed structure factor
by the Fourier transformed Gaussian function. This resulted in
a visible increase in total correlations for r > 15. For only the
T = 6 K conventional correlations did this correction make
any visible difference.

It should be noted that the experimental energy and mo-
mentum resolution limit how low in temperature and how
far in real space one can analyze the quantum correlations.
As the resolution of each improves, one can evaluate lower
temperatures and larger spatial distances. Although the lim-
its of each is not something we explore in this paper, one
can still use resolution as a rough guideline: if �h̄ω is the
energy resolution, one can only be sensitive to temperatures
such that kBT > �h̄ω, and one cannot fully appreciate the
enhancement of quantum correlations when cooling below
this temperature scale. Similarly, if �Q is the average momen-
tum resolution along a particular reciprocal space direction,
one can only evaluate distances � 2π

�Q along that direction in
real space.

APPENDIX B: EVOLUTION OF QUANTUM
CORRELATIONS UPON CHANGING

THE INTERCHAIN COUPLINGS

Here we discuss the detailed evolution of the spatial struc-
ture of quantum correlations upon changing the strength of
the coupling between Heisenberg chains, calculated from our
experimental and theoretical data. Figure 6 shows a compari-
son between the experimental data for two different quantum
correlation functions (quantum covariance and the quan-
tum Fisher information matrix) for KCuF3 at T = 6 K and

FIG. 6. Comparison between (a) 1D theoretical QFIM and
(b) quantum covariance and experimental KCuF3 data at 6 K. For
comparison, the QMC result for KCuF3 J⊥ is also shown in (b). Note
that the r > 10 experimental values are systematically smaller than
the theoretical 1D calculations as a consequence of finite interchain
coupling J⊥.

theoretical data obtained for a single one-dimensional chain.
In particular the theory data for quantum covariance are ob-
tained via quantum Monte Carlo (QMC) as in the main text.
On the other hand, the data for the quantum Fisher infor-
mation matrix are inaccessible to QMC because they require
full knowledge of the dynamical susceptibility. For one-
dimensional systems, this knowledge can be obtained using
the density-matrix renormalization group (DMRG) [64,65],
which allows for the calculation of S(k, ω) at finite tempera-
ture [66,67]. Here we extend the finite-T calculations reported
in Ref. [20] down to T = 6 K. We use the DMRG + +
software [68] to study a system with open boundary con-
ditions consisting of L = 50 physical sites and 50 “ancilla”
sites. S(k, ω) spectra are calculated using the Krylov-space
correction vector method [69,70], with a Lorentzian energy
broadening with half width at half maximum η = 0.1J . For
details on how to reproduce the DMRG calculations, see the
Supplemental Material of Ref. [20].

As seen in Fig. 6, the predictions for the quantum cor-
relation functions of a single one-dimensional chain lie
systematically above the measured values for KCuF3, while
a much better quantitative agreement is obtained when taking
into account the small, albeit finite, interchain coupling J⊥, as
shown in Fig. 6(b). This indicates that (1) the resolution of the
experiment is clearly sufficient to reconstruct the difference
between isolated and weakly coupled Heisenberg chains and
(2) moving from a single chain to coupled chains, quantum
correlations reorganize spatially in such a way that correla-
tions along the chains are suppressed.

We examine this trend systematically via QMC by
monitoring how the spatial structure of the quantum co-
variance changes upon increasing the magnitude of the
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FIG. 7. Dependence of CovQ on J⊥. Dependence of the quantum covariance on the ferromagnetic interchain coupling J⊥ for J⊥/J =
−0.047 (like for KCuF3), −0.1, −0.2, −0.3, −0.4, and −0.5 at a temperature T/kB = 6J/388 (corresponding to 6 K for KCuF3). The panels
show QMC data obtained for a system with a size of 100 × 20 × 20. Each panel shows the in-chain correlations [CovQ(i, i + x), taking x as
the lattice direction parallel to the chains] and the correlations perpendicular to the chain [e.g., CovQ(i, i + y)].

ferromagnetic coupling (J⊥ < 0) between the chains. In par-
ticular we examine the quantum covariance at T = 6 K
(assuming an in-chain coupling equal to that of KCuF3) along
the chains, namely, CovQ(i, i + x), taking x as the direction
of extension of the chains, and perpendicular to the chains,
namely, CovQ(i, i + y), where y is one of the two perpendic-
ular lattice directions. Figure 7 shows that, upon increasing
|J⊥|, the correlations along a coordinate axis perpendicular
to the chain become stronger, as can be trivially expected,
although they remain much weaker than the in-chain correla-
tions for the whole range of values of J⊥ we explored (|J⊥| �
J/2). On the other hand, the in-chain quantum covariance
undergoes a much more complex evolution: it becomes signif-
icantly weaker at short range when |J⊥| increases, witnessing
a form of monogamy of short-range quantum correlations, as
discussed in the main text. Yet the behavior at long range
shows an opposite trend for sufficiently large |J⊥|, as the
in-chain quantum covariance develops a stronger tail. This tail
can be associated with the appearance of long-range multi-
partite quantum correlations. Such correlations are expected
in a long-range-ordered quantum ground state, such as that
of a system of coupled Heisenberg chains, and their mul-
tipartite nature causes them to no longer be monogamous.
Nonetheless, the long-range tail is rather thin, and it makes
a small contribution to the quantum variance of the in-chain

staggered magnetization, so that the global trend is a de-
crease in this quantity with |J⊥|, as shown in Fig. 5(b) of the
main text.

The buildup of increasingly strong multipartite quantum
correlations and entanglement upon coupling the chains is
clearly exhibited in Fig. 8, in which the quantum variance
density of the order parameter MQ = ∑

i eiQ·ri Sz
i is shown;

the ordering vector Q is (π, 0, 0) for J⊥ < 0 and (π, π, π )
for J⊥ = 0. We clearly observe that rather massive entangle-
ment sets in at low temperatures in the more strongly coupled
chains, involving >40 spins within the temperature and pa-
rameter range we explored. Yet this behavior really stems
from the buildup of correlations transverse to the chains, as
can easily be deduced by making a comparison with Fig. 5(b)
of the main text.

APPENDIX C: COMPARING QUANTUM CORRELATORS

For a comparison of the experimental and theoretical quan-
tum correlators at all measured temperatures, see Fig. 9. Note
that above T = 75 K, only a few nearest neighbors have quan-
tum correlations distinguishable from the large r background
noise. This is a consequence of the experimental background
in KCuF3, which was previously discussed in Ref. [20].
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FIG. 8. Quantum variance density of the order parameter for
coupled Heisenberg chains. The ordering vector Q is (π, 0, 0) for
J⊥ < 0 and (π, π, π ) for J⊥ = 0.

The DMRG data for the QFIM on isolated chains at fi-
nite temperature, shown in Fig. 9, may erroneously suggest
that the latter quantity possesses a decay length which is
systematically larger than that of, e.g., CovQ. This discrepancy
is, in fact, not intrinsic; it is, rather, the result of the fact that
the DMRG calculations are done on isolated chains, while the
theoretical curves for CovQ are QMC data for coupled chains.
Indeed, as noted in the main text, the strength of the interchain
coupling J⊥ makes a dramatic difference in the length scale of

FIG. 10. Quantum covariance from quantum Monte Carlo
(QMC) for coupled and uncoupled chains. The quantum covariance
is much longer ranged in the one-dimensional J⊥ = 0 limit. Mean-
while, the chain length slightly decreases the length scale, in accord
with the periodic boundary being farther away.

the quantum correlator. Figure 10 shows this more explicitly,
with CovQ plotted for the KCuF3 value of J⊥ and for J⊥ = 0.
See also the detailed discussion of this topic in Appendix B.

In the case of one-dimensional QMC simulations, we also
show a comparison of the quantum covariances for two dif-
ferent system sizes (L = 100 and L = 200). The data display
minor differences over the range of distances which are rele-
vant for the experiment. We therefore conclude that the QMC
data we use for the quantum covariance are essentially devoid
of significant finite-size effects.

FIG. 9. Full temperature dependence of the quantum correlation functions. Absolute values of various definitions of the quantum correlator
applied to KCuF3 at temperatures between T = 6 K and T = 200 K, as well as QMC and DMRG calculations for comparison. (a) corresponds
to Fig. 4 in the main text, but with the raw values of the QFI matrix.
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