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Motivated by recent experimental reports of Majorana zero modes (MZMs) in quantum-dot systems at the
“sweet spot,” where the electronic hopping #, is equal to the superconducting coupling A, we study the time-
dependent spectroscopy corresponding to the nontrivial fusion of MZMs. The term “nontrivial” refers to the
fusion of Majoranas from different original pairs of MZMs, each with well-defined parities. We employ an
experimentally accessible time-dependent real-space local density-of-states (LDOS) method to investigate the
nontrivial MZM fusion outcomes in canonical chains and in a Y-shaped array of interacting electrons. In the case
of quantum-dot chains where two pairs of MZMs are initially disconnected, after fusion we find equal-height
peaks in the electron and hole components of the LDOS, signaling nontrivial fusion into both the vacuum / and
fermion W channels with equal weight. For m-junction quantum-dot chains, where the superconducting phase
has opposite signs on the left and right portions of the chain, after the nontrivial fusion we observed the formation
of an exotic two-site MZM near the center of the chain, coexisting with another single-site MZM. Furthermore,
we also studied the fusion of three MZMs in the Y-shaped geometry. In this case, after the fusion we observed the
novel formation of another exotic multisite MZM, with properties depending on the connection and geometry of

the central region of the Y-shaped quantum-dot array.
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I. INTRODUCTION

Majorana zero modes (MZMs) are attracting much at-
tention due to their potential application in developing
fault-tolerant quantum computation [1-3]. The MZMs follow
non-Abelian statistics and allow the nonlocal encoding of
quantum information, which makes them good candidates to
utilize as qubits in topological quantum computations [3-5].
Recently, in coupled quantum-dot systems, a pair of localized
MZMs were observed in the tunneling conductance measure-
ments at the sweet spot #;, = A, where the electronic hopping
t, and superconducting coupling A are equal in magnitude
[6]. These quantum-dot systems [7—11] allow us to realize the
idealized Kitaev chain with gate-tunable experimental param-
eters [12—-14]. Realizing MZMs via quantum dots significantly
reduces the problem of formation and detection of the MZMs,
as compared to the more standard proximitized semicon-
ducting nanowire systems, which are affected by random
disorder [7,15].

This recent experimental progress in quantum-dot sys-
tems provides a platform to test the non-Abelian statistics of
Majorana fermionic candidates [6,16]. Fusion and braiding
are two fundamental characteristics of non-Abelian anyons
[17,18]. The realization of MZMs at the sweet spot allows
the study of the fusion and braiding of MZMs even in small
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systems [6] (because in this case the MZMs are fully localized
at a single site), as compared to the semiconducting nanowires
that need a more extensive system. The sweet spot also
facilitates analytical calculations for special cases [19,20].
The fusion of MZMs and the detection of their outcomes
in quantum-dot experiments are expected to be easier than
performing braiding of MZMs in other platforms.

The multiple fusion outcomes of MZMs, y x y =1+ W,
are related to their non-Abelian statistics [3], because two
MZMs (y) after fusion can result in either vacuum (/) or
a fermion (W) [17]. However, the fusion of MZMs can be
designed in two ways, namely a “trivial” and a “nontrivial”
procedure. In the trivial case, the fusion outcome is deter-
ministic (either 100% I or 100% W), as the fusion of MZMs
occurs within the same pair with well-defined parity +1 or
—1. This trivial fusion can be performed using just one pair
of MZMs in a chain by moving one edge MZM towards
the other edge MZM [21]. On the other hand, the nontrivial
fusion refers to the fusion of Majoranas belonging to different
initially disconnected pairs of MZMs each with predefined
parities. In this nontrivial case, the fusion outcomes can yield
both vacuum 7 and regular fermion W with equal probability
50% [17,22]. To perform nontrivial MZMs, we need at least
two pairs of MZMs, i.e., at least four MZMs. This paper
mainly focuses on the time-dependent nontrivial fusion using
two and three pairs of MZMs in models simulating interacting
quantum-dot systems.

For the more canonical semiconductor nanowire setups, the
detection of the fusion outcome of MZMs has been proposed
by charge sensing based on dynamical Bogoliubov—de Gennes
simulations [17,22,23]. Recently, in the context of coupled
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quantum dots, the detection of the fusion of MZMs has been
suggested using the parity readout of the systems [24]. Even
without fusing the MZMs, by preparing the two pairs of
MZMs in two different ways, the testing of fusion outcome
has been proposed by observing the fermionic parity readout
(deterministic or probabilistic) [24]. However, some studies
indicate that “probabilistic parity measurements” can also oc-
cur for trivial low-energy modes [25,26]. Consequently, in the
presence of low-energy modes, probabilistic parity measure-
ments may yield false-positive signals in fusion experiments.
Without careful manipulation of system parameters, these fu-
sion experiments are not conclusive proof of the non-Abelian
statistics of MZMs [25]. Compared to previous theoretical
studies, we propose here detecting fusion outcomes using
the time-dependent real-space electron and hole components
of the local density-of-states methods [21] in both canon-
ical chains and in Y-shaped arrays of interacting quantum
dots. The quantum-dot system provides a very well-controlled
setup, where the local control of individual quantum dots
significantly reduces the damaging effect of disorder in de-
tecting the MZMs [16]. The total local density-of-states
[LDOS(w, t)] should be experimentally accessible via tunnel-
ing conductance measurements in the existing quantum-dot
setups [6,27].

Motivated by the recent experimental realization of a
minimal Kitaev chain in quantum dots coupled by a short
superconductor-semiconductor hybrid (SC-SM) [6,28], here
we study the nontrivial fusion of MZMs in quantum-dot
arrays at the sweet spot (#, = A). In the quantum dot experi-
ments, the hopping and superconducting coupling between the
quantum dots are tunable by changing the electrostatic gate
[12,14,29,30]. In this work, to observe the time-dependent
nontrivial fusion, we tune the time-dependent hopping and su-
perconducting coupling between quantum-dot arrays, where
two different pairs of MZMs exist with predefined parities. We
implement the time-dependent exact-diagonalization method
using all the many-body states of interacting electrons of
finite-size systems to study the spectroscopy of the nontrivial
fusion of MZMs [21]. In the case of two one-dimensional
chains with two pairs of MZMs [see Fig. 1(a)], we find equal
height peaks in the electron and hole components of the
LDOS(w, t), showing the formation of both electron ¥ and
vacuum channels. Surprisingly, due to the nonequilibrium ef-
fects and parity conservation of the time-evolving many-body
state, we find the equal magnitude of electron and hole peaks
at both +w energies in LDOS(w, t). In contrast to previous
studies, we discuss the effect of repulsive Coulomb interac-
tion on nontrivial fusion. We also present the time-dependent
nontrivial fusion using a pair of quasi-MZMs away from the
sweet spot and for a pair of MZMs at the sweet spots. In this
scenario, namely when the left portion is away from the sweet
spot and the right portion is at the sweet spot, we observe
unequal peak heights in the electron and hole components of
LDOS(w, t) at £w as time increases.

For the m-junction, where the two pairs of MZMs are
initialized with opposite signs of the pairing amplitude after
the fusion, we find that one of the central MZMs remains
unaffected, while the second single-site MZM is transformed
to a two-site nonlocal MZM. In fact, we find that this two-site
MZM is formed after tunneling through the centrally localized

(a) One dimensional chain
"0 ¢"@

(b) Y-shape geometry

FIG. 1. Nontrivial fusion of Majoranas. (a) Schematic repre-
sentation of two pairs of Majorana zero modes ([y;, y»] and [ys,
y4]) in a quantum dot array. At time ¢ = 0, the parities of the left
Py = —i{(y1y2) and right P34 = —i(y3y4) pairs of MZMs are well
defined. There is no hopping and no pairing coupling between the
Majoranas y, and y;. (b) Schematic representation of the three pairs
of Majoranas zero modes in Y-shaped geometry. At time ¢ = 0, the
parities of three pairs of MZMs P, = —i(y1y2), Psa = —i{Y3V4),
and Psg = —i(ysys) are well defined. Initially, there is no hopping
and pairing coupling between the three central Majoranas y», ys,
and ys. For nontrivial fusion, the time-dependent hopping and pair-
ing amplitudes between the different pairs of MZMs were varied
with time.

one-site MZM. The tunneling of half of the second MZM
through another centrally localized one-site MZM is a novel
effect in a strictly one-dimensional geometry [31].

Furthermore, we study the time-dependent fusion of an
odd number (three) of Majoranas, where the three pairs of
MZMs are initialized in a Y-shaped geometry [see Fig. 1(b)].
Surprisingly, during the fusion process we find zero energy
peaks in the LDOS(w, t) for three different central sites in
addition to the electron and hole peaks at finite energies. After
the fusion of Majoranas, we find the formation of an exotic
multisite MZM. Interestingly, the nature of multisite MZMs
depends on the connection and direction of the couplings near
the center, which joins the legs of a Y-shaped quantum-dot
array.

Last but not least, our results provide supportive evidence
of the non-Abelian statistics of Majorana zero modes by prob-
ing the LDOS(w, t) of nontrivial fusion. The most conclusive
and definitive method to verify their non-Abelian statistics
would be through “braiding” procedures [25]. Here, we are
simply adapting to the novel experimental setups using quan-
tum dots where peaks in the conductance are associated with
Majoranas. These conductance peaks would appear in our
setup as peaks at zero frequency in the local density of states.
Future work will fully clarify the braiding procedure in the
quantum dot setups, both experimentally and theoretically.

The organization of the manuscript is as follows. Section II
contains the nontrivial fusion of Majorana zero modes for two
one-dimensional chains with two pairs of MZMs. We divide
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this section in two subsections where the two pairs of MZMs
are initialized with the same signs for the pairing amplitudes
(IT' A), and the opposite signs for the pairing amplitudes (II B).
Section III describes the nontrivial fusion of three MZMs in
a Y-shaped geometry. Finally, in Sec. IV we conclude our
results.

II. NONTRIVIAL FUSION OF MZMs IN A
ONE-DIMENSIONAL CHAIN

In this section, we will consider two one-dimensional
quantum-dot arrays at the sweet spot, with the same sign
for the superconducting phase (¢; = ¢, = 0). These two left
and right short wires are coupled through time-dependent
hopping [#,(¢)] and pairing [A(¢)] terms, which can be
tuned by changing the gate potential adiabatically. In the
quantum-dot experiments, the hopping and pairing terms
(and also their relative signs) between the two quantum dots
are tuned by modifying the properties of Andreev bound
states in a superconductor-semiconductor hybrid (SC-SM)
[14,29,30]. These properties are controlled by an electrostatic
gate connected to the SC-SM hybrid segment. The effective
Hamiltonian for the quantum-dots arrays under the approxi-
mation of using only one level per quantum dot then becomes

-1
HY = Z (—tthTCj_;,_l + Pl AC]'CJ'_H + H.C.), (1)
j=1
2
HR = Z (—thchch + eid’zACjchrl +H.C.), 2)
j=l+1
HE @) = (—ty()c, cip1 + At)cicrr + Heel). 3)

The Coulomb interaction between quantum dots is the stan-
dard

21
HIm = Z (annj+1). (4)

j=1

To perform future nontrivial fusion experiments, it is essential
to prepare a high-quality initial state of two pairs of MZM:s.
This quality of MZMs can be compromised by the presence
of disorder, interactions, or overlap between the MZMs within
each pair involved in the fusion. In Fig. 2, we show the effect
of repulsive Coulomb interactions V on the initial state with
two pairs of MZMs for two different system sizes L =4
and 12. We calculate the electron [LD(w)] and hole parts
[LD¢(w)] of the local density of states separately for the
central sites. Using the eigenvectors |W,,) of the Hamiltonian
H [Egs. (1)—(4)], the electronic component of the local density
of states [LD;(cu)] for site j can be written as [21,32]

1 [{(Wlc; W)
LD (w,) = ——1 . 5
5(@) nm<za)+Em—E1+in ®)

m

For the smaller system L = 4 (also known as the Poor Man’s
MZM pair), even a very small V leads to a shift in the
zero-energy peaks of LD}(w) and LD(w) from w =0 to a
finite value [Figs. 7(b) and 7(c)]. This is expected as the
Poor Man’s MZM lacks topological protection because of
the overlap of wave functions [16,26]. Due to the smaller

@t=0 p, , Py
- P S
@ @ @ @
1 2 3 4

FIG. 2. (a) Schematic representation of two pairs of MZMs using
a four-site quantum-dot array with the same left and right supercon-
ducting phases ¢ = ¢, = 0. (b,c) The electron LD%(w) and hole part
LDé(w) of the local density of states at site j = 2 using L = 4 sites
and different values of V. (d,e) The electron LD (w) and hole part
LD'(w) of the local density of states at site j = 6 using L = 12 sites
and different values of V.

system size, the MZMs can hybridize if they involve more
than one site, which lifts the ground-state degeneracy. Interest-
ingly, for the system size L = 12 we find that the zero-energy
peaks of LD}(w) and LD?(a)) remains at w = 0 (with equal
peak heights) for the smaller values of V [see Figs. 2(d)
and 2(e)] as the wave-function overlaps are negligible. Us-
ing the full-diagonalization method, we find that the spectral
weight at @ =0 in the LDj(a)) and LD?(a)) only arises
from the fourfold-degenerate ground-state manifold, not from
the higher-energy states above the gap. These results show
that long enough system sizes (but still accessible by our
techniques) give topological protection against the Coulomb
repulsion due to exponentially decaying wave functions, and
the quality of MZMs remains preserved at least for small
values of V [33,34]. In the quantum-dot experiments, the
Coulomb interaction V' can be minimized by the supercon-
ducting segment in between the quantum dots [26].

A. The case ¢y = ¢, =0

At time ¢ = 0, there is no hopping and superconducting
coupling between the two wires. As shown in Fig. 3(a), the
system has two separate pairs of MZMs (yi, y») and (y3, 1),
with well-defined parities Pj, = —i(y1y»2) = —1 and Py =
—i{y3ya) = —1. The total parity (full system) of the initial
many-body state can be calculated as Py = PPN [35].
The presence of four MZMs at + = 0 results in a fourfold-
degenerate ground state, as we can potentially create two
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FIG. 3. (a) Schematic representation of two pairs of MZMs using
a 12-site quantum dot array with the same left and right supercon-
ducting phases ¢; = ¢, = 0. At time ¢ = 0, there is no hopping
and no pairing coupling between the Majoranas y, and y;. The
time-dependent hopping and pairing coupling between sites j = 6
and 7 can be established by reducing the “barrier” between the left
and right portions of the 12-site chain, leading to the nontrivial
fusion of the central MZMs y, and y;. (b) The electron component
LD(w, t, j) and (c) the hole component LD"(w, t, j) at site j =6
and for different times ¢, at V = 0.05.

spinless fermions by combining these four MZMs in pairs
(thus we have degeneracy 2% = 4). Fusing the MZMs within
the same pair (with parity —1 as an example), namely y,
and y, or y3 and y4, using a height-variable potential wall
in between them, results in the formation of a full electron
(trivial fusion) [21]. This trivial fusion reveals only one fusion
channel W with deterministic formation of a full electron. On
the other hand, the nontrivial fusion of our focus in this paper
is expected to produce both fusion channels and a more exotic
intermediate dynamics.

In the real experiments of a fusion of MZMs, one needs
to change the hopping and pairing amplitude as a function of
time close to the adiabatic limit in a dynamical way. Namely,
in the real experiments the outcome depends on the initial
condition and on the speed of the process. Here, we perform
time-dependent fusion of MZMs by changing the hopping
according to the formula #,(z) = th(T)”T‘S’, where 1/t is the
quenched rate, §t = 0.001 is the small time step we used, and
n is the integer number of those steps, such that the #,(¢) at
sites j = 6 and 7 increases approximately linearly from O to
1 in a time t = 100. At final time ¢t = T, the time-dependent
hopping becomes equal to #,(7") = 1. For the time evolution,
we chose the initial many-body state |W(0)) with total parity
Pot = 41 (this parity is chosen because it corresponds to
the ground state at nonzero V). To observe the fusion out-
comes at intermediate time ¢, first, we time-evolve the initial
wave function [W(0)) up to time ¢ using the time-dependent
Hamiltonian H(z) as |W(?)) = T exp (—if(; H(s5)ds)|W(0)),
where 7T is the time ordering operator [36]. Next, we calculate
the double-time Green function G(¢, ¢t') [37] using the instan-

taneous Hamiltonian Hy = H(t =ty) at time t = ¢;:
Gt 1) = (WO)lcje™ " c;e” ™1 W(). (6)

The time-dependent LD} (w, t) for the electronic part of the
local density of states is the Fourier transform of the local
Green function at site j with respect to #’. Using the eigenvec-
tors |¢,,) of the instantaneous Hamiltonian H(¢) and |W(?)) at
time ¢, the electronic component of LD ;(w, t) at site j can be
written as LDS(w, 1) [21]

_ 3 (WO)cT |pn) (Pnlcjldm) (B V(1))

T e, — ey +w-+in

m,n
The broadening parameter was fixed to n = 0.1 throughout. e,
and e, denote eigenvalues of the instantaneous Hamiltonian
H (t). Similarly, the hole component of LD ;(w, t) at site j can
be written as LD?(a), 1) [21]:

_ Z (W) pn) (Dulcjldm) (Bmlc W (@)

v

8
e, — e, +w+in ®)

Interestingly, with an increase in the couplings #,(¢) and
A(t), the electron LD(w, 1) and hole LD?(a), t) both show

equal-height subgap peaks close to w = :i:th(T)% [in the rest
of the paper, we use #,(T) = 1] for V = 0.05, reflecting the
formation of equal amounts of electron and hole at positive
and negative values of w [see Figs. 3(b) and 3(c)]. The ap-
pearance of equal magnitude electron and hole components
at both frequencies w = +2¢/7 is clearly a nonequilibrium
effect and it is influenced by the conservation of total par-
ity of |W(z)). Due to this dynamics, the time-evolving wave
function |W(¢)) has an equal overlap with low-energy states
|¥;) and |W4) with the same total parity P = +1 (see
Appendix C). This allows for similar spectral weights close
to w = —2t/t in LDj(w, t) (transition from state m =1 to

n=4) and LD?(a), t) (from state m = 2 to n = 3), and also
similar spectral weights close to w = +2¢/7 in LD(w, 1)
(resulting from a transition from state m = 3 to n = 2) and
in LD?(a), t) (from state m = 4ton = 1).

The equal superposition of two low-energy many-body
states in |\W(¢)) even for large T = 100 [we have also checked
for the case v =500 and the results are the same (see
Appendix D)] is a unique property of nontrivial fusion. In
the trivial fusion for the larger t, the time-evolving wave
function |\W(¢)) overlaps with only one low-energy state of
the instantaneous ground-state manifold of the time-evolving
Hamiltonian. Introducing a time-dependent hopping #,(¢) and
pairing A(z), the fuse of the MZMs y, and y3 occurs non-
trivially because the MZMs are from different pairs. The #,(¢)
and A(t) allows for tunneling of a single electron (or a pair of
electrons) from the left to the right chain portions during the
fusion process, which changes the individual parities of those
left and right quantum-dot segments, but the total parity of the
many-body state |W(¢)) remains the same [38]. This results in
the formation of both fermion W and vacuum I channels, after
fusion of y, and y3 nontrivially (see Appendix A for more
details). At the final time t = T, the system has two MZMs (y,
and y4) at the left and right edge of the chain [see Fig. 3(b)].
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FIG. 4. (a) Schematic representation of two pairs of MZMs [(y1, ¥») and (y3, y4)]: at time ¢ = 0, the left part has pairing coupling strength
—A, while the right part has pairing coupling strength +A. (b) Pictorial representation for the formation of a multisite MZM (x3) at time
t = T. (c) Time-dependent parity —(P;;(¢)) as a function of time ¢ for different pairs of Majoranas and at V = 0.05. The electron and hole
components of the time-dependent local density of states LDS(t) and LDjf (t) at time ¢t = 0 and for sites (d) j = 5, (e) j = 6, and (f) j = 7. The
LDS(t) and LDg’. (t) at intermediate time r = 60 and for sites (g) j = 5, (h) j = 6, and (i) j = 7. The LDS(t) and LD? (t) at the final timet = T

and forsites j) j =5,(k) j=6,and (1) j = 7.

In summary, we have found an equal spectral weight
for electron and hole components in the time-dependent lo-
cal density of states during the nontrivial fusion process of
Majoranas from different pairs. Interestingly, the time-
evolving state becomes an almost equal-linear superposition
of two low-energy states, even for larger values of . The
appearance of equal height peaks of electron and hole in
the local density of states signals the nontrivial nature of
Majorana fermions. In the case of fusion involving two pairs
of MZMs, where the two MZMs of the left pair are already
slightly hybridized (for A} = 0.7 and A, = 1.0), this leads
to an asymmetry in the peak heights close to w = +2¢/7
(see Appendix A). In other words, there is a formation of
unequal-height electron and hole peaks around w = £2t/t,
which is clearly different from the case of an initial state with
nonoverlapping pairs of MZMs.

B. The case ¢; = rand ¢, = 0

In this subsection, we will study the Majorana fusion in
a m-junction setup. To form a m-junction between the right
and left quantum-dot arrays, we consider two pairs of MZMs,
in this case with opposite signs of the pairing terms (—A for
the left array and +A for the right array). The MZM in the
left quantum-dot array has definite parity FPg ; i(Yy1) =
—1, and that in the right pair has definite parity P71, =
—i(y7v12) = —1 as well [see Fig. 4(a)]. Att = 0O there are no
hopping and pairing terms between the left and right arrays
(the system has a mirror symmetry with respect to a line
passing in between sites j = 6 and 7).

Next, we turn on the time-dependent hopping (f;,) and
pairing A(z) terms (with zero phase factor as an example)

between the left and right arrays, which effectively makes a
time-dependent 7 -junction quantum-dot array. Note that the
introduction of time-dependent A(#) terms with zero phase
factor breaks the initial global mirror symmetry about the line
in between the sites j = 6 and 7. The choice of positive A(z)
leads to the formation of a m-junction at site j = 6 (i.e., for
J < 6 the pairing term is A < 0 and for j > 6 it has positive
A > 0). To observe the behavior of the central Majoranas y,
and ys3, we calculate the time-dependent electron LDj-(t) and

hole LD? (t) portions of the local density of states for sites

J =5, 6,and 7. Atr = 0 the electron LD¥(t) and hole LD? @)
portions of the local density of states show equal height peaks
at w = 0 for the sites j = 6 and 7, which indicate the presence
of two localized MZMs [see Figs. 4(d)—4(f)].

Increasing time to ¢t = 60 [Figs. 4(g)-4(i)], the peak
heights of LDS(t) and LD?(t) increase for site j = 5, remain
constant for site j = 6, and decrease for site j = 7. This
spectral weight shift suggests the tunneling of MZM y;3 from
site j = 7 to 5. Note that the heights of the peaks at w = 0, for
the electron LDS(¢) and hole LD? (t) parts of the local density
of states, are almost equal for each site for all times . We also
find that the spectral weight at @ = 0 mainly arises from the
low-energy subspace of fourfold degenerate states. The equal
contribution of electron and hole parts of the local density of
states at w = 0 for these central sites shows the presence of
Majorana zero modes at sites j = 5, 6, and 7.

At the final time t = T = 100, the LD; () and LD_’]? (t) have
almost equal height peaks for sites j = 5 and 7, and the total
spectral weights on these two sites is close to localized on-site
MZM, confirming the formation of the multisite MZM yx3
[see Fig. 4(b)]. The LD_‘; () and LD? (t) for site j =6 all
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remain constant up to time ¢ = T. Thus, the transfer of spec-
tral weight from site j = 7 to 5 at @ = 0 hints at a tunneling
effect of half of the MZM y; from site j = 7 to site j =5,
leading to the formation of a multisite MZM 3.

Interestingly, the four low-energy states remains degener-
ate, even after switching the time-dependent hopping #,(¢) and
pairing A(t) terms between the left and right arrays, showing
the presence of a total of four MZMs in the system. We also
find that the time-evolving wave function |W(¢)) = u|W¥;) +
v|W,) becomes a superposition of two low-energy degenerate
ground states with the same total parity (see Appendix C).
The amplitudes u# and v depend on the tunneling of the MZM
y3 from site j =7 to site j =5 (for L = 10 site and time
t =20, |u|*> =0.8 and |v|> = 0.2). These amplitudes u and
v remain the same for different values of large t. Further-
more, to confirm the tunneling of MZM y3, we also calculate
the time-dependent parity (P;(¢)) = —i(W()|y;y|¥(t)) for
different pairs of Majoranas. As shown in Fig. 4(c), the ob-
servable (Ps (t)) remains constant with time, showing that
the MZM y, remains localized at site j = 6 without any
change in parity of the pair (y;, y»). Meanwhile, (P; 12(t))
starts decreasing and approaches the value 1/4/2 at time
t = T. On the other hand, (Ps,j2(¢)) becomes nonzero as time
increases and approaches —1/+/2. Once again, these results
suggest the formation of a multisite MZM with the form
X3 = —Jiiys + \/%y% where one component of x; appears
due to tunneling of y; initially localized on site j = 7.

For the ground state of a one-dimensional Kitaev wire with
a sr-junction, there are a total of four MZMs. For the system
considered in Fig. 4, at the final time ¢t = T, the system forms
a m-junction at site j = 6. To understand the behavior of the
central MZMs, using just three central sites (j = 5, 6, and 7)
near the junction, we can write the Hamiltonian for the central
region as (with ¢; = m and ¢, = 0 for the two central bonds,
respectively)

H™ = <2iA(y8yE + vityvd). ©9)

where we have used the relations ¢s = J5e™*/2(y4' + iy,
co = (v +ivd), and ¢7 = J5e7 (3! + iyf). Interest-
ingly, the Majorana operator y¢ is absent in the Hamiltonian,
showing that 2 is a single-site MZM mode at site 6. The form
of the Hamiltonian also suggests that one localized mode, yg‘,
does not interact with any other Majorana zero mode, which
could be the reason for localization of the initial Majorana
mode located at site j = 6. Our recent work, using symmetry
arguments, shows that for the two wires (each carrying a pair
of MZMs) with a phase difference of w, the central MZMs
are protected by mirror symmetry. The central MZMs do not
fuse as they belong to different quantum numbers [39]. After
diagonalizing the Hamiltonian H™, we find that a multisite
MZM y; = —\/%)@ + %)/7 resides at sites j = 5 and 7 (see
the SM of Ref. [20] for a more detail calculation). These
ground-state results indicate that out of an initial total of four
single-site MZMs, there are now three single-site local MZMs
(two localized at edge end sites and one at central site j) and
one multisite MZM with the form y; = —\/Liyj + %yﬁz.

In summary, the Majoranas near the 7 -junction do not fuse.
Instead, one MZM remains a localized single-site MZM, and

another transforms into a multisite MZM (located on two sites
with equal amplitude). The tunneling of half of the second
MZM through the centrally localized one-site MZM in a strict
one-dimensional geometry is an interesting dynamical effect.
This partial tunneling of a Majorana leads to the time-evolving
wave function in a superposition of two low-energy degener-
ate states (with the same total parity).

III. NONTRIVIAL FUSION OF MZMs IN Y-SHAPED
QUANTUM DOT ARRAYS

This section will study the fusion of three MZMs from dif-
ferent pairs, further increasing the complexity of the problem.
The presence of multiple Majoranas can occur in topological
materials or in quantum circuits experiments. The overlap be-
tween odd and even numbers of Majoranas can give different
behavior in the tunneling spectra [40]. Here, we simulate the
overlap between an odd number (three) of MZMs as a function
of time, starting with fully separated MZMs. We consider a
Y-shaped geometry consisting of three quantum-dot chains
at the sweet spot and with the same superconducting phase
¢1 = ¢ = ¢3 = 0 at each arm. At time ¢ = 0, there is no
hopping and superconducting coupling between these three
quantum-dot arrays. As shown in Fig. 5(a), the system has
three pairs of Majorana zero modes (y1, y2), (v3, y4), and
(¥s, ¥6), with well-defined initial parities P, = —i(y1y2) =
+1, Py = —i{y3v4) = +1, and Ps¢ = —i(ysys) = +1. The
six Majorana modes at the sweet spot (f, = A=1and V =
0) give rise to an eightfold-degenerate ground state, be-
cause we can form three nonlocal spinless fermions (which
give rise to 23 = 8-fold degeneracy). Within an eightfold-
degenerate ground state, four states have individual total
parity P = 41 and the remaining four have parity P = —1.
Using the fourfold-degenerate ground state with the same
fixed parity, one can encode two topological qubits, which
can display all the basic operations for topological quantum
computation [41].

The Hamiltonian for the Y-shaped quantum-dot array (with
¢1 = ¢ = ¢3 = 0 at each arm) can be divided into four dif-
ferent parts. The Hamiltonian for each arm can be written as

-1
H'=Y"(=tac; cjt1 + Acjejn + He), (10)
j=1
20-1
H" = %" (=tnc/cjpr + Acjej +Hel), (1)
j=l+1
3[-1
H" = 3" (—tic; cjs1 + Acjejpn + He).  (12)
j=21+1

Moreover, in order to fuse the MZMs from different pairs,
first we switch on the time-dependent pairing A(#) and hop-
ping #;,(¢) terms between each arm. In practice, we tune the
time-dependent pairing and hopping terms as A(t) = t;,(t) =
th(T)"T‘” between the central three MZMs (y», 3, ¥5). We
used T = 100 and other parameters as described in the pre-
vious cases. T is the final time such that A(f) =1,(t) = 1 at
t =T = 100. The time-dependent Hamiltonian coupling the
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FIG. 5. (a) Schematic representation of three pairs of Majorana zero modes in a Y-shaped Kitaev wire. At t = 0, each pair has fixed
fermionic parity P, , = +1, P54 = +1, and P5s ¢ = +1. The direction of the arrows denotes the directions of the pairing terms A and site index
j in each wire. (b) Pictorial representation of the formation of the multisite MZM R; after the fusion of the three central MZMs at timer = T,
after the adiabatic process ends. The time-dependent electron LD%(w, ) and hole LD?(w, t) portions of the local density of states at time
t =0 and for sites (¢) j =4,(d) j=5,(e) j =9, and (f) j = 6. The LD(w, 1) and LD?(a), t) for the intermediate time ¢ = 20 and for sites
(g)j=4,(h)j=5,31)j=9,and (j) j = 6. The LDj.(a), t) and LD?(a), t) for the final time ¢t = T and forsites (k) j =4, () j =5,(m) j =9,
and (n) j = 6. These numerical calculations were performed using L = 12 sitesand t, = A = 1, V = 0.05.

arm edges is written as

HE(@t) = —ty(t)e, ¢, + A)ererr + Hee
—th(t)clTHcy+1 + A(t)ciy1c241 + Hec.

—ty(t)e, ey + Al)cicosr + He. (13)

Using the above Hamiltonian H = H'+ H" + H™ +
HC(t), we performed the time evolution starting from the
ground state with total parity P = +1, and we calculated the
electron LD? (w, t) and hole LD?(w, t) portions of the local
density of states for various times ¢. Att = 0, we find that the
central edge sites j =4, 5,and 9 in LDj’- (w, t) and LD? (w, 1)
have sharp peaks at w = 0 [Figs. 5(c)-5(f)]. Introducing a
time-dependent hopping and pairing term leads to the simul-
taneous fusion of three central MZMs (3, 3, ¥s), the three
belonging to different original MZM pairs. The fusion of cen-
tral MZMs leads to a split in the initial eightfold-degenerate
ground state into two sets of low-energy fourfold-degenerate
states.

As shown in Fig. 5(g), the time-dependent electron
LD;(a), t) and hole LDg’-(w, t) portions of the local density
of states at time ¢ = 20, for site j = 4, show peaks close to
w= :ti—’, indicating the formation of both electron and hole
for positive and negative frequencies. Using Eqs. (6) and (7),
we find the spectral weights at w = :l:3f—’ in the electron and
hole parts of LD j(w, t) arising from the transition between the
splitted two-set of fourfold-degenerate states (mainly n = 2
tom=~6orn=1tom=>5). In fact, the time-evolving state
|W(z)) becomes a superposition of four states (two from the
lower fourfold-degenerate part and the remaining two from

the other fourfold states of the eightfold low-energy states) of
the instantaneous Hamiltonian.

Atsites j = 5 and 9 [Figs. 5(h) and 5(i)], the LD;(a), t) and
LD’}(w, t) show peaks at @ = 0 and also close to w = :l:%’,
with equal spectral weight of the electron and hole portions
of the time-dependent local density of states. These results for
the sites j = 5 and 9 show that the MZMs still survive for
these sites, and in addition there is a formation of electron
and hole close to w = i% due to the partial fusion of MZMs.
Interestingly, for site j = 6, a small peak appears at v = 0
[Fig. 5(G)]. With a further increase in time, we find for sites
Jj =5 and 9 the peaks at w = 0 decrease with time. On the
other hand, for site j = 6 the peak strength at @ = 0 increases
with increasing time ¢. These results show the transfer of
spectral weight from the central sites (j =5 and 9) to the
site j = 6. For the final time after the adiabatic process,
t =T,the LD(w, 1) and LD? (w, t) show almost equal-height
peaks at w = 0 for the three central sites j =5, 9, and 6;
see Figs. 5(1)-5(n). These results indicate the formation of
an equal amount of electron and hole, and, surprisingly, one
multisite MZM after the fusion of three central MZMs. In
other words, we unveiled an interesting result that the fusion
of three one-site MZMs leads to a single MZM spread on three
sites.

In summary, in comparison to the fusion of two MZMs
(even numbers), the fusion of three MZMs (odd numbers)
gives rise to a novel multisite MZM. The local density of
states shows peaks at w = 0 for three different central sites.
Note that the multisite MZM position depends on the pairing
terms’ direction. The appearance of a multisite MZM near the
central part is mainly due to the different coupling directions
(effectively a m-junction) at the trijunction [see Fig. 5(b)].
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IV. SUMMARY AND OUTLOOK

In this paper, we studied the nontrivial fusion of Majorana
zero modes in canonical chains, as well as in a Y-shaped
array of interacting quantum dots close to the sweet spot in
parameter space. We examined the real-time dynamics of the
local density of states to reveal the nature of the nontrivial
fusion of MZMs. The Majoranas were initialized in pairs
with definite parity in separate quantum-dot arrays. Varying
the time-dependent hopping and pairing terms between the
different quantum-dot arrays, we carry out the fusion of Majo-
ranas from different pairs (nontrivial fusion). We observed the
fusion outcomes by calculating the time-dependent electron
and hole part of the local density of states. Several interesting
results were unveiled:

(i) In the case of a one-dimensional chain with the same
phase on each left and right wire, we demonstrated the for-
mation of both an electron and a hole close to w = £2¢/1
in equal magnitude for small values of Coulomb interactions.
The formation of equal height peaks of the electron and hole
at each w = £2¢/7 value is a dynamical effect and reveals
the nontrivial nature of the MZMs fusion. In fact, we find that
the time-evolving states becomes an equal superposition of
two states (with the same parities). This nonequilibrium effect
is unique in the case of the nontrivial fusion. For the trivial
fusion, the time-evolving states overlap with only one state
of the instantaneous Hamiltonian. We also explored the non-
trivial fusion using a pair of overlapping quasi-MZMs away
from the sweet spot and a pair of nonoverlapping MZMs at
the sweet spot. In this case, we find an asymmetry in the peak
height of the electron and hole portions of the local density
of states at w = £2¢/7r. The unequal-peak heights varying
time in the electron and hole part of the local density arises
from having an initial state with unequal contributions of the
electron and hole components of the quasi-MZMs.

(i1) On the other hand, quite interesting results were found
for the case of a r-junction (with opposite phase on each left
and right wire) because the Majoranas do not fuse with one
another. Instead they formed a multisite MZM residing on two
sites near an independent localized one-site central MZM. The
time-average parity and time-dependent local density of states
reveals that the one-site MZM at the edge (near the center) of
the left array does not fuse with other MZMs and remains
localized on the same edge site. Surprisingly, half of the
MZM of the right quantum-dot array (near the center) tunnels
through the localized one-site MZM and forms a multisite
MZM. The tunneling of half of the MZM even in a strict
one-dimensional geometry is a quite novel effect. The tunnel-
ing of the MZM also makes the time-evolving state become
a superposition of two states from the fourfold-degenerate
ground-state manifold of the instantaneous Hamiltonian even
for a smaller quench rate. The amplitude of the two states
in the time-evolving state depends on the amount of tunnel
MZM through the centrally localized MZM. In the quantum-
dot system, the m-junction can be experimentally achieved
by applying a magnetic flux through a superconducting loop
that connects the two hybrid segments of such a system [42].
Additionally, the relative sign of hopping and superconduct-
ing coupling between the quantum dots can also be altered
using an electrostatic gate attached to the hybrid region, even
without any application of magnetic flux [30].

(ii1) For the fusion of MZMs in a Y-shaped quantum-dot
array, where the MZMs are coupled through time-dependent
hopping and pairing terms in a triangular geometry, we show
the formation of an exotic multisite MZM after the fusion
of three central MZMs from different pairs. Interestingly, the
time-evolving state becomes a superposition of four states
of an instantaneous Hamiltonian (two from the lower four-
fold degenerate states and the other two from the higher
fourfold-degenerate states), due to the nontrivial fusion and
the formation of multisite MZMs. In general terms, the nature
and behavior of the central multisite MZMs are dependent on
the geometry and direction of the pairing terms of quantum-
dot arrays. The knowledge of the characteristics of the central
multisite MZMs is important for the braiding of MZMs
in dynamical and realistic settings, where the exchange of
MZMs is performed by moving the MZMs adiabatically. In
comparison to the previously studied MZM fusion in the
noninteracting single-particle picture, here we do not find any
density fluctuations during the nontrivial fusion of MZMs (in
one-dimensional geometry), using the time-evolving many-
body wave function. The formation of the electron and hole
clearly appears in the electron and hole parts of the time-
dependent local density of states. The local density of states
can be measured in tunneling spectroscopy in quantum-dot
experiments.

The study of nontrivial fusion is related to non-Abelian
statistics and can be performed in quantum-dot setups. For
successful fusion experiments, it is crucial to carefully con-
sider the effects of interactions, disorder, and system size,
because trivial low-energy modes could produce false-positive
results [25,26]. Our results indicate that even small intersite
Coulomb interactions can be destructive for the Poor Man’s
Majorana zero modes, causing all four MZMs to move away
from zero energy for short chain systems. Fortunately, such an
effect is absent for longer chains, showing that the topological
protection increases with system size.

Our time-dependent results for the electron and hole com-
ponents of the local density of states suggest that separately
measuring the electron and hole portions of such a local den-
sity of states could aid in distinguishing the fusion outcomes
from trivial low-energy modes with unequal superposition
of electron and hole states [43]. However, the tunneling
experiments generally measure the total local density of
states, making it challenging to differentiate between fusion
outcomes, low-energy modes, and topological MZMs. Fortu-
nately, recent advancements in quantum-dot systems provide
a well-controlled setup, and the effective local gate control
of individual quantum dots significantly reduces the effect of
disorder or low-energy modes, making it feasible to measure
MZMs more accurately than in nanowire systems [16]. We
believe that our novel theoretical results for the nontrivial
fusion of Majoranas in the one-dimensional chain and in
the Y-shaped geometries can be realized using the recently
developed quantum-dot setups. Our prediction of the fusion
outcome, based on the time-dependent local-density-of-states
method, is accessible to present-day experimental capabilities
[6]. Braiding experiments using Y-shaped [20] or X-shaped
[39] quantum dots should provide more conclusive and defini-
tive evidence of MZMs and their non-Abelian properties, but
such efforts will be pursued in the future [26].
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FIG. 6. (a) Schematic representation of a 12-site quantum-dot
array with different left and right superconducting pairing strength
Ay = 0.7 and A, = 1.0. The left part has overlapping quasi-MZMs
(¥{, v») as the system is away from the sweet spot. The right part has
nonoverlapping MZMs (y3, v4) and has t, = A, = 1. Attime ¢t =0,
there is no hopping and no pairing coupling between the Majoranas
y, and y3. (b) The electron component LDi(w, 1) and (c) the hole
component LD?(a), t), at site j = 6 and for different times ¢, all at
V = 0.05. (d) The electron component LD%(w, t, j) and (e) the hole
component LDjf (w, 1), at site j = 7 and for different times ¢, all at
V =0.05.
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APPENDIX A: NONTRIVIAL FUSION BETWEEN A PAIR
OF QUASI-MZMs AND A PAIR OF MZMs

In Fig. 6, we present the nontrivial fusion for 1D quantum
dots with different pairing strengths A; = 0.7 and A, = 1.0.
As the left part is away from the sweet spot, the MZMs (y; and
y,) spatially overlap with each other and move slightly away
from zero energy [see Figs. 6(b) and 6(c)]. On the other hand,
the right MZM pair (3 and y4) are at sweet spot A, =1, = 1
and they do not overlap with each other. For the pairs on the
right, we find equal-height peaks at w = 0 in the electron and
hole parts of the local density of states at r = 0 [Figs. 6(d)
and 6(e)]. This is expected for the MZMs as they are their
own antiparticles, with an equal contribution of electron and
hole components [32]. For ¢t > 0, we vary the time-dependent

FIG. 7. Schematic representation of two pairs of MZMs using a
four-site quantum-dot array with the same left and right supercon-
ducting phases ¢; = ¢, = 0.

hopping and pairing terms between the left and right quantum-
dot segments in order to fuse the quasi-MZM y, (at j = 6) and
MZM y; (at site j = 7) nontrivially, as described in the main
text. Interestingly, in this case with increasing time, we find
unequal-height electron and hole peaks close to w = £2¢ /.
The unequal peak height comes from the fact that for this case
the time-evolving wave function |\W(¢)) has an unequal over-
lap with the low-energy states |W;) and |\W,), which is quite
different from the nontrivial fusion, where the left and right
pairs of MZMs were initialized at the sweet spot A} = A, =
1. This shows that our time-dependent results for the electron
and hole components of the local density could be used to dis-
tinguish the fusion outcomes from trivial low-energy modes
(which appears after hybridization of two MZMs in the same
region). However, we find that the total local density of states
at w = £2¢ /7 shows very similar behavior, as compared to
the previous case of nontrivial fusion.

APPENDIX B: ANALYTIC CALCULATION OF LOCAL
DENSITY OF STATES FOR A FOUR-SITE KITAEV
HAMILTONIAN

In this Appendix, we calculate analytically the results for
the four-site quantum dots at the sweet spot (t, = A = 1) to
find the exact peak positions during the fusion process. The
four-site Kitaev model without any coupling between the left
and right quantum-dot arrays can be written as

H' = —thcchz + Acico + H.c., (B1)

HR® = —t¢ cq + Acses + He. (B2)

In the many-body basis (2* = 16 states), this four-site
Hamiltonian is fourfold-degenerate with two states having
total even parity, and the other two having odd parity. The
fourfold-degenerate eigenvalues at #;, = A take the form E,, =
—2A. We have a total of four Majorana zero modes local-
ized at each site, as shown in Fig. 7. The ground-state wave
function in the presence of a very small interaction V = 0.001
(such that we have well-defined total parity) is

Vo) = 0.5]0101) + 0.5|0110) + 0.5]1001) + 0.5]1010).
(B3)
Note that the total fermion number parity of the system P =
exp(ir > in ;) = +1 (even), but the individual parity of the
left and right quantum-dot segment is odd (as state kets take
the form |[01) ® [10)).

Next, we introduce the hopping and pairing coupling be-
tween the left and right quantum dots as a parameter:

HE = —tlc) e3 + Asseacs + Hee. (B4)
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For finite values of tég = A3 the fourfold degeneracy
of the system splits into two pairs [(E}, E;)and(E3, E4)] of
twofold-degenerate states with a combination of even and odd
fermion parity. The four lowest eigenvalues are

E| = —2A — Ay, (BS)
Ey = —2A — Ags, (B6)
E3 = =2A + Ay, (B7)
Es = —2A + Aps. (B3)

We found that the ground-state wave function for finite values
of Ay3 = 0.2 (in units of #;, unless otherwise stated) (and very
small values of V = 0.001) can be written as

|W,) = 0.353]0000) + 0.353]0011) + 0.353]0101)
+0.353]0110) + 0.353]1001) + 0.353/1010)
+0.353]1100) + 0.353|1111). (B9)

Interestingly, now for the ground state |\Wy), the left and right
parts of the quantum-dot segments have both even- and odd-
parity kets, which allow for the formation of both electron and
hole components in equal magnitude. The electron part of the
local density of states at site j can be calculated as

LD (. ) = _llm<z <w1|c]|wm><wm|c]|.wl>)‘ ®10)

T —~ o+ E,—E +in
We find that the peaks in the electron or hole portions of
the local density of states arise from the transition between
the states (m = 3 and 1) with opposite fermion parity. The
peak position for Ap; = 0.2 in the electron part of the local
density of states appears at w = E} — E3 = —2A,3 = —0.4.
Similarly for the hole part of the local density of states, the
peak appears at w = E3 — E} = 2A,3 = +0.4. For the static
case in the nontrivial fusion process, these results show that
we have the formation of an electron at w = —2 A3 and a hole
at w = +2A,3. The peak heights in the electron and hole parts
of the local density of states are almost the same, indicating
the formation of an equal magnitude of electron and hole in
the nontrivial fusion process [44].

APPENDIX C: THE OVERLAP OF TIME-EVOLVING WAVE
FUNCTIONS WITH OTHER LOW-ENERGY STATES

LLé=¢=0

In Fig. 8, we calculate the overlap of the time-evolving
states |W(t)) with the four lower states of the instantaneous
Hamiltonian H(¢) in the processes of nontrivial fusion of
MZMs. We start the time evolution using the ground state
|Ww(0)) with total parity P = +1 of the system shown in
Fig. 8(a), where both the left and right parts of the quantum-
dot arrays have the same superconducting phases ¢; = ¢, =0
and t;, = |A| = 1. At time ¢ = 0, there is no hopping and
no pairing coupling between the left and right quantum-dot
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10§ . e
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FIG. 8. (a) Schematic representation of two pairs of MZMs using
a 10-site quantum-dot array with the same left and right supercon-
ducting phases ¢; = ¢, = 0. At time ¢ = 0, there is no hopping
and no pairing coupling between the Majoranas y, and y;. (b) The
overlap of time-evolving wave function |\W(¢)) with the four lowest
states of the instantaneous Hamiltonian at time 7 (in log scale). The
numerical calculations were performed using the full diagonalization
of an L = 10-site cluster and V = 0.05, T = 500.

segments [Fig. 8(a)]. As described in the main text, we per-
form the time evolution by changing the hopping according
to the formula #,(t) = th(T)”T‘S’ using a system size L = 10
sites and T = 500. As shown in Fig. 8(b), the time-evolving
states |W(¢)) becomes an equal superposition of two states
|W;) and |\Wy4) very shortly with an increase in time. Note that
the individual total parity of the |W;) and |\Wy) states is the
same as in the case of the time-evolving states |W(z)). The
equal superposition of these two states |W) and |Wy) results
in an equal amount of spectral weight at @ = £2¢/7 in both
electron and hole parts of the local density of states.

2. ¢pp=mand ¢, =0

In Fig. 9, we consider a m-junction quantum-dot array,
where both the left and right parts of the system have different
superconducting phases ¢; = m and ¢, = 0. The parameters
aret, = |A| = 1. We start the time evolution using the ground
state |W(0)) with total parity P = 41 of the system shown in
Fig. 9(a). At time ¢ = 0, there is no hopping and no pairing
coupling between the left and right quantum-dot segments
[Fig. 9(a)]. Next, we calculate the overlap of the time-evolving
sites, using T = 100. As shown in Fig. 9(b), the time-evolving
states |W (7)) = u|W;) 4+ v|W4) become a superposition of two
low-energy degenerate ground states (with the same total par-
ity). The amplitudes u# and v depend on the tunneling of the
MZM y; from site j = 6 to site j = 4 and change far more
slowly as compared to the case when ¢; = ¢, = 0. Interest-
ingly, the system remains fourfold-degenerate even with the
change with time in #,(t) = A(¢) at the bond between site
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FIG. 9. (a) Schematic representation of two pairs of MZMs using
a 10-site quantum-dot array with different left and right super-
conducting phases ¢, = 7 and ¢, = 0. At time ¢ = 0, there is no
hopping and no pairing coupling between the Majoranas y, and ys.
(b) The overlap of the time-evolving wave function W(z) with the
four lowest states of the instantaneous Hamiltonian at time 7. The
numerical calculations were performed using full diagonalization of
L = 10sites and V = 0.05, = = 100.

J = 5 and 6. This result shows that in the case of the tunneling
of MZM through a localized Majorana at site j =5, it still
leads to a superposition of two low-energy states. Note that
the amplitudes # and v remain the same for different values of
large 7.
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FIG. 10. Comparison of the local density of states at r/t = 0.4
and site j = 6, and for different values of ¢ = 100 and 500: (a) elec-
tron part of the local density of states LD(w, 1), and (b) hole part
of the local density of states LD? (w, t). These numerical calculations
were performed using L = 12 sites and V = 0.05.

APPENDIX D: LOCAL DENSITY OF STATES FOR
DIFFERENT VALUES OF THE QUENCH RATE 1/t

In the main text of the paper, for the time evolution of
the one-dimensional quantum-dot arrays, we used t = 100,
which is already a quite small quench rate 1/7. To confirm
that this value characterizes an adiabatic process, in Fig. 10
we have compared the electron and hole parts of the local
density of states at /T = 0.4 for two different values of t,
i.e., T = 100 and 500. As shown in Fig. 10(a), the electron
part of the local density of states at w = £2¢/t = £0.8 re-
mains the same for two different values of ¢ = 100 and 500.
Similarly, we also find that the hole part of the local density
of states also takes the same values for two different values
of T = 100 and 500. These results show that the quench rate
1/t considered in the main text (r = 100) is already a quite
small number, representative of adiabatic movement, and the
dynamical results are unchanged even for larger values of t.
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