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We numerically investigate the telltale signs of pair-density-wave order (PDW) in the Kondo-
Heisenberg chain by focusing on the momentum resolved spectrum in different parameter regimes.
Density matrix renormalization group calculations reveal that this phase is characterized by a dis-
persion with two minima and four Fermi points, indicating the emergence of an effective next-
nearest-neighbor hopping that arises as a second-order effect to avoid magnetic frustration. The
pairs appear in the spectrum as in-gap bound states with weight concentrated in the hole pockets.
The low-energy physics can be understood by means of a generalized t−J model with next-nearest-
neighbor hopping. Our results offer a guide for searching for experimental signatures, and for other
models that can realize PDW physics.

Introduction– The pair density wave state (PDW)
was proposed as a possible scenario to inter-
pret the anomalous superconducting phase in the
La1.875Ba0.125CuO4 [1, 2], where pairing is intertwined
with a stripe or charge density wave (CDW) order. This
stripe/PDW phase appears in the underdoped regime
where the spin gap opens. Similar PDW order was
also suggested as a candidate phase in Bi2212 [3, 4],
Bi2201 [5], Kagome superconductors [6], iron-based su-
perconductors [7], and transition metal dichalcogenides
[8].

In the PDW phase, the superconducting order pa-
rameter exhibits spatial oscillations, and electron pairs
acquire a finite center-of-mass momentum. This
novel pairing order is naturally distinct from the
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state [9, 10],
which is induced by an external magnetic field and an
imbalance between majority and minority spin popula-
tions. It also differs from the uniform superconducting
(SC) state, where the spatial average of the order param-
eter is non-vanishing.

Many numerical and theoretical studies have been con-
ducted to solve the puzzles surrounding the PDW state,
and its origin still remains unclear [11–25]. In a semi-
nal work, a computational and theoretical study of the
Kondo-Heisenberg (KH) model [18] demonstrated that
the PDW state coexists with charge density wave (CDW)
order in the spin gapped phase. Although conducted in
one spatial dimension and on a model not obviously re-
lated to high-Tc superconductivity, this study provides
valuable insights on a numerically solvable Hamiltonian
and has motivated further research in this new direction
[26].

The opening of the spin gap has long been believed
to be a precursor to the emergence of superconductivity,
PDW, and CDW instabilities [18, 22, 27, 28]. However,
the exact mechanism driving the PDW transition is not
well understood. A recent theoretical mean-field study of
superconductivity on the triangular lattice [29] pointed
out that the Fermi surface geometry can impact the PDW

formation. Despite this progress, our understanding of
the interplay between antiferromagnetism, Fermi surface
geometry, and PDW order is still far from being settled.
In this work, we revisit the one-dimensional Kondo-

Heisenberg model by paying particular attention to the
topology of the Fermi surface and the excitation spec-
trum. Our results show that the emergence of the PDW
is closely related to a “hump” feature in the electronic
momentum distribution function (MDF), which can be
interpreted as the manifestation of a Lifshitz transition
from a Fermi surface with two momenta ±kF , to one with
four. We attribute this transition to an effective next-
nearest-neighbor hopping [30] arising from the magnetic
interaction with the localized spins.
Model and Method – We investigate the Kondo-

Heisenberg chain, described by the following Hamilto-
nian:

HKH = −t
∑

iσ

(c†i,σci+1,σ + h.c.) + JH
∑

i

S⃗i · S⃗i+1

+ JK
∑

i

s⃗i · S⃗i, (1)

where c†iσ creates an electron of spin σ on the ith site

along a chain of length L. The localized spin S⃗i interact
with each other via an exchange term, and with the con-
duction electrons through a Kondo term, parametrized
by JH and JK , respectively. Both interactions are pos-
itive (antiferromagnetic), as usually assumed for heavy
fermions systems [31]. We take the inter-atomic distance
as unity and we shall express all energies in units of the
hopping parameter t.
The phase diagram of the Kondo-Heisenberg model

with hole doping was first determined in Ref.32. At 1/8
hole doping and JH ≲ 2, this model exhibits a tran-
sition from a spin-gapped phase to a Luttinger Liquid
phase with increasing JK [32–34]. The spin gap has non-
monotonic behavior, growing exponentially immediately
after turning on the Kondo coupling JK [32–35], and de-
creasing to zero for large enough JK , when it becomes
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a Luttinger liquid (LL). When JK >> JH , the elec-
trons become strongly coupled to local impurities to form
heavy fermions with a large Fermi surface. In this regime,
one can think of the half-filled chain as a vacuum of lo-
calized singlets. By doping it, each hole partners with a
dangling spin on the Heisenberg chain, playing the role
of fermionic quasiparticles interacting via the Heisenberg
exchange JH . As a result, the physics corresponds to
that of a a modified t − J chain with density |1 − n|
where the holes play the role of the electrons [32]. Be-
tween these two limits, at intermediate values of JK , the
system displays strong PWD and CDW tendencies.

In the following, we choose a parameter regime that al-
lows us to study the transition to a PDW phase. Specif-
ically, we present results for JK varying between 1 and 4
and JH between 1 and 2, within the spin-gapped (we
present results for the spin gap in the Supplemental
Material (SM)) phase for the 1/8 hole doped Kondo-
Heisenberg model [32]. This parameter range has also
been shown to display a binding tendency near half-filling
[36], and is smoothly connected to small values of JK and
JH , that are more realistic representations of materials.
[32, 36]

We use the density matrix renormalization group
(DMRG) method [37, 38] to study chains of lengths from
32 to 80 sites, using a bond dimension up to m = 1600
to ensure a truncation error smaller than 10−6. We also
use time-dependent DMRG (tDMRG) [39–42] to com-
pute the photoemission and inverse-photoemission spec-
tra. The tDMRG is implemented by using a Suzuki-
Trotter decomposition of the time-evolution operator. In
order to get the momentum and frequency resolved spec-
tra, we calculate the single particle correlation functions
in space and time ⟨c†i (T )cj(0)⟩ and ⟨ci(T )c†j(0)⟩ in time
steps of τ = 0.05 to times up to T = 60, and then Fourier
transform the results to momentum and frequency with
an exponential envelope that yields a Lorentzian line-
shape of width ϵ = 0.1. While the truncation error grows
to 10−6 at longer times, the effects are mitigated by the
exponential envelope, which also helps to alleviate ring-
ing artifacts arising from Fourier transforming in a finite
time window.

Results– To understand the connections between
Kondo physics, antiferromagnetism and the pairing
mechanism, we probe the pair-pair correlations Ps(i, j) =

⟨∆†
i∆j⟩, with

∆†
i =

1√
2
(c†i,↓c

†
i+1,↑ − c†i,↑c

†
i+1,↓). (2)

We notice that, unlike the doublon pairs in the negative-
U Hubbard model [43], pairs here are single electrons
forming a singlet on nearest-neighbor sites. By fixing
JH = 1 and increasing JK , the PDW order in the KH
model is first enhanced, then transitions to a uniform su-
perconducting order (Fig.1 (c)). In Fig.1 (a) we show the
pairing correlations for KH model (Eq.1) in a linear scale.

FIG. 1. (a) Pairing correlations for L = 64, N = 56; (b)
momentum distribution function for L = 32, N = 28 (c)
Pairing correlations for L = 64, N = 48, (d) momentum
distribution function for L = 32, N = 24.

At 1/8 hole doping and JK = 3, JH = 1, the PDW is
the dominant order and is accompanied by a subsidiary
charge density wave (CDW); when JK = 4, JH = 1, the
KH model exhibits quasi-long-ranged uniform supercon-
ducting order with no oscillatory component.

When the Kondo coupling is in the intermediate regime
( i.e. of the order of the bandwidth), JK = 1 to 4, a
sizable spin gap opens, with an onset of short-range an-
tiferromagnetic correlations, charge order, and a pairing
instability characterized by an order parameter that os-
cillates in space with momentum vector KPDW = π.

To further characterize the origin of the PDW phase,
we present results for the momentum distribution func-
tion (MDF), obtained by Fourier transforming the sin-

gle particle correlations G(i, j) = ⟨c†i,↑cj,↑⟩. Results for
JK = 1, 2, 3, 4 are shown in Fig.1. As JK increases, we
observe the appearance of a “hump” feature, that evolves
to a singularity with a larger Fermi surface, correspond-
ing to a transfer of spectral weight from low to high mo-
menta. This excess of spectral weight spans the range be-
tween kF2 = π−kF1 and k = π, where kF1 ≃ kF = π/2n.
This feature in the momentum distribution has previ-
ously been seen in similar models [33, 34].

To elucidate the origin of this feature, we compute the
photoemission spectra for the KH model with JH = 1,
and JK ranging from 2 to 5, shown in Fig.2. We use a log
scale for the spectral weight to visualize faint features in
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FIG. 2. Photoemission and inverse-photoemission spectra for JH = 1, JK = 2 to 5 for the Kondo-Heisenberg model. The
single-particle removal spectra and single-particle addition spectra are separated by the solid magenta lines noting the Fermi
levels with 1/8 hole doping. The solid white lines mark the spin (and charge) gaps; the solid orange lines represent the energy
of 3JK/4 above Fermi level; and the solid blue lines are at JK above Fermi level. The vertical lines demark kF and π − kF
respectively. The figures are plotted in log-scale colormaps to show the faint features. Same color scale is applied in all panels.

the spectrum (notice that this choice tends also to accen-
tuate small ringing errors due to the Fourier transform).
These four cases represent three scenarios: JK = 2 and
JK = 3 correspond to the emergence and enhancement
of the PDW order; the case of JK = 4 lies at the onset of
uniform SC and the fading of the PDW; JK = 5 depicts
the formation of coherent heavy fermions. Furthermore,
the results for JK = 3 and JK = 4 also illustrate the cases
with and without the “hump” in the MDF, respectively.

As JK increases, we observe the opening of a Mott
gap caused by the Kondo interaction. There are two
high energy features: a more intense, high energy band
at ω ∼ JK , corresponding to a singlet-triplet excitation,
and a fainter one at energy ∼ 3JK/4 due to doublon exci-
tations, that are actually the edge of a continuum. More
interestingly, we also observe in-gap excitations appear-
ing right above the Fermi level (see SM for photoemission
results at JK = 1). These in-gap states, correspond to
an added particle on top of the condensate and are sep-
arated from the valence band by the spin gap [43]. The
most dramatic effect is the development of two minima
and four Fermi points in the lower band, below the Fermi
level. While these features are not clear due to the insuf-
ficient momentum resolution, they are more evident at
density n = 3/8 (See SM). This change in the topology
of the Fermi surface can only be attributed to an effec-

tive next-nearest-neighbor hopping arising from a com-
petition between the magnetic order and the Kondo cou-
pling t2 ∼ t2/JK : Since the Heisenberg chain has short-
range antiferromagnetic correlations, an electron with a
given spin projection has to hop two sites in order to
avoid a ferromagnetic alignment with a localized spin.
At JK = 4, the PDW becomes a uniform SC order, the
two local minima are replaced by a flat band region cen-
tered at k = π, and the in-gap states at low energy are
replaced by a wide gapless band with minima at ∼ 2kF .
At JK ∼ 5, as the system transitions from a SC to a
LL phase, the spectral weight becomes more uniformly
distributed in momentum, and the dispersion recovers
its more familiar cosine-like profile with only an effective
nearest-neighbor hopping teff ∼ 0.5, as expected in the
heavy-fermion phase [31, 44].

To further understand the low energy physics in the
PDW phase, we investigate the connection between the
KH and the t1 − t2 − J model [45]:

Ht1−t2−J = −
∑

i,σ

t1(c
†
i,σci+1,σ + h.c.) (3)

−
∑

i,σ

t2(c
†
i,σci+2,σ + h.c.)
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FIG. 3. Left: Single-particle removal spectrum for the Kondo-
Heisenberg model; Right: Same for the t1−t2−J model in the
hole language (see text). The spectral weight is in log-scale.
Same color scale is applied to both panels.

+ J
∑

i

(S⃗i · S⃗i+1 −
1

4
nini+1),

where ni =
∑

σ c
†
iσciσ is the electron number operator,

and we implicitly apply the constraint forbidding double
occupancy. We compare the spectral functions of the KH
and the t1 − t2 − J models at densities n = 7/8 and 1/8,
respectively. In Fig.3 we show results for the KH model
with JH = 1,JK = 3, and the t1 − t2 − J model with
t1 = 1; t2 = −0.5 an J = 2.4, deep in the PDW phase.
Electrons in the KH model become equivalent to holes
in the t1 − t2 − J model. Hence, one needs to apply a
particle-hole transformation and look at the hole spectral
function (related to the electronic one by a sign change
in ω and a π-shift in momentum). We observe that both
spectra show identical features, a strong indication that
the low energy physics of both models is similar in this
regime.

Since the dispersion with two local minima is a fea-
ture that emerges at half filling –see SM for additional
photoemission results–, and persists upon doping (Fig.2),
we expect that the PDW phase will be stable in a wide
range of densities on the hole doped side. To examine
this, we computed the ground state correlations at dif-
ferent densities. In Fig.1 (c) we present results at filling
factor n = 0.75, illustrating a persisting PDW instabil-
ity. In addition, the MDF (Fig.1 (d)) also shows a similar
transition as the lightly doped case.

Conclusion– The PDW phase in the KH model is
mediated by the interplay between magnetic order and
Kondo exchange and emerges at the same time as the
electronic band undergoes a Lifshitz transition from a
“Fermi surface” with two Fermi points, to one with four,
and a double minimum. The role of magnetism is two-
fold: (i) it induces an effective next-nearest-neighbor
hopping that affects the topology of the electronic band

and (ii) acts as the pairing glue.

We find that the low energy physics in the PDW phase
is in correspondence with the results of the t1 − t2 − J
model in the dilute regime, where a PDW phase emerges
at large hole doping and intermediate values of J [45].
The connection between the KH model and the t − J
model in the strong JK regime was established in Ref.[32]
but the need for an additional next-nearest-neighbor hop-
ping was overlooked. In the intermediate JK regime –JK
of the order of the bandwidth– where the PDW is stabi-
lized, we observe that the band acquires two minima and
four Fermi points, indicating the emergence of an effec-
tive next-nearest-neighbor hopping t2. This second order
process allows electrons to gain kinetic energy without
paying magnetic frustration.

In the ground state, the momentum distribution devel-
ops a “hump” feature, with a “trench” carved between
momenta kF1 and kF2, and the pair-pair correlations dis-
play a modulation with momentum KPDW = π. It is
useful to contrast these observations to the FFLO case,
where the four Fermi momenta correspond to those of
the majority and minority spin, ±kF↑,±kF↓, and the
superconducting order parameter oscillates with phase
KFFLO = kF↑ − kF↓. Hence, by analogy, a naive expec-
tation would be to assume that the PDW order would
oscillate with phase KPDW = kF1-kF2. Instead, center-
of-mass momentum of the pairs is fixed at KPDW = π =
kF1 + kF2, regardless of the hole density. This implies
that the pairs are formed by electrons at momenta kF1

and kF2, instead of kF1 and −kF2, as already observed
in Refs.18, 27, and 28 (see also Refs.8 and 14).

Our study of the ground state properties and the exci-
tation spectrum of the KH model suggests that the fun-
damental ingredients for the realization of a PDW phase,
other than attractive interactions, is an effective (or in-
trinsic) next-nearest-neighbor hopping. This finding of-
fers a path toward experimental confirmation in materials
such as organic radical chains [46].
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1 Spin gaps and spin-spin correlations

We present the spin gaps extrapolated to the thermodynamic limit in Fig.1. The spin
gap has nonmonotonic behavior with JK , first increasing, and then decreasing to zero as
the system transitions to the liquid phase at large JK . In Fig.2, we show the relationship
between ln(∆/t) and t/JK . In the bosonization study of Ref.[1, 2], these two quantities
were predicted to obey a linear relationship. We re-examined this behavior over a wider
range of JK , and our results show that when JK is small (i.e., JK < 1), the spin gap
deviates from the bosonization prediction.

In Fig.3, we show the spin-spin correlations on the electron gas chain (left) and the
Heisenberg chain (right) for various values of JK . We fix JH = 1 and the doping density
at 1/8. The spin correlation length keeps decreasing through the transition from the
pair density wave (PDW) phase to the uniform superconducting (SC) phase. When
the system enters the SC phase, only the nearest neighbors on the electron gas chain
exhibit noticeable antiferromagnetic (AFM) correlations, which effectively vanish in the
Heisenberg chain, even for nearest neighbors.

2 Charge gaps extrapolated to the thermodynamic limit

The results for charge gaps extrapolated to the thermodynamic limit are displayed in
Fig.4. Similar to the spin gap, the charge gap also exhibits a trend that first increases
then decreases with the increasing of JK . Furthermore, we observe from our numerical
calculations that the charge gap and spin gap are identical for JK = 2, 3 and 4. The
energy gap in this region corresponds to the energy that is required to break a bound
pair, indicating that the system is in the pairing phase.

3 Spectral functions in the Jk small and large limit

Photoemission and inverse-photoemission spectra for JK = 1 and JK = 8 are shown in
Fig.5, with white lines indicating the Fermi level. The spectrum for JK = 1 exhibits a
small gap, although it is not clearly visible due to the computational resolution limi-
tations. The spectrum for JK = 8 is gapless, and we observe quasi-coherent dispersive
bands in this liquid phase. Although it was demonstrated that this is in a Luttinger
liquid phase in Ref.[2], we observe minimal signature of spin-charge separation.
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Figure 1: Spin gaps as a function of JK for JH = 1. Inset: spin gaps extrapolated to the thermodynamic
limit for various values of JK ; the length of the chain ranges from L = 32 to L = 80.

Figure 2: ln(∆/t) vs. t/JK for JK = 0.1, 1, 2, and 3.

Figure 3: Spin-spin correlations measured on the electron gas chain (left) and Heisenberg chain (right).
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Figure 4: Charge gaps as a function of JK for JH = 1. Inset: spin gaps extrapolated to the thermo-
dynamic limit for various values of JK ; the length of the chain ranges from L = 16 to L = 64.

Figure 5: Normalized photoemission and inverse-photoemission spectra for JH = 1, JK = 3 (left) and
JH = 1, JK = 4 (right). The single-particle-removal spectrum and single-particle-addition spectrum
are separated by a thin white line denoting the Fermi energy.

3



Figure 6: Normalized photoemission and inverse-photoemission spectra for JH = 1, JK = 3 at half
filling.

4 Spectral functions at different filling densities

The photoemission spectrum for JH = 1, JK = 3 at half-filling is presented in Fig.6.
The dispersion with two minima can be seen clearly in this result.

The single-particle removal and addition spectra for a higher doping density are
shown in Fig.7, where we present the data for L = 32, N = 20, JH = 1, and JK = 2
and 3. The four Fermi points are clearly visible in both cases.
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Figure 7: Photoemission and inverse-photoemission spectra for JH = 1, JK = 2 (left) and JH =
1, JK = 3 (right). The single-particle-removal spectrum and single-particle-addition spectrum are
separated by a thin white line noting the Fermi energy. These results are presented in log scale
colormaps.
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