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Diabatic error and propagation of Majorana zero modes in interacting quantum dots systems
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Motivated by recent experimental progress in realizing Majorana zero modes (MZMs) using quantum dot
systems, we investigate the diabatic errors associated with the movement of those MZMs. The movement is
achieved by tuning time-dependent gate potentials applied to individual quantum dots, effectively creating a
moving potential wall. To probe the optimized movement of MZMs, we calculate the experimentally accessible
time-dependent fidelity and local density-of-states using many-body time-dependent numerical methods. Our
analysis reveals that an optimal potential wall height is crucial to preserve the well-localized nature of the MZM
during its movement. Moreover, we analyze diabatic errors in realistic quantum-dot systems, incorporating the
effects of repulsive Coulomb interactions and disorder in both hopping and pairing terms. Additionally, we
provide a comparative study of diabatic errors arising from the simultaneous versus sequential tuning of multiple
gates during the MZMs movement. Finally, we estimate the timescale required for MZM transfer in a six-
quantum-dot system, demonstrating that MZM movement is feasible and can be completed well within the
qubit’s operational lifetime in practical quantum-dot setups.
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I. INTRODUCTION

Majorana zero modes (MZMs) have potential applications
in the development of fault-tolerant quantum computation
[1–5]. The nonlocal encoding of information and non-Abelian
exchange statistics of MZMs allow for the construction
of topologically protected qubits and gates, which are im-
mune to local perturbations and decoherence. Experimentally
achieving Majorana zero modes has been studied extensively
through a hybrid semiconductor nanowire or a ferromagnetic
atomic chain system with strong spin-orbit coupling placed
over a superconductor [6,7]. However, in these systems the
presence of disorder and impurities continues to pose signif-
icant challenges to the formation and detection of Majorana
zero modes [8–11]. Recently, a novel approach has been
proposed to realize MZMs by utilizing a chain of quantum
dots [12–14]. The experimental realization of the minimal
Kitaev chain using just two quantum dots coupled via a
short superconductor-semiconductor hybrid [15], has given
new hope for the observation of Majorana zero modes. In
these systems, the effective couplings between quantum dots
are gate-tunable and mediated by well-controlled Andreev
bound states in the hybrid semiconductor-superconductor re-
gion. The excellent local control over the chemical potential of
each quantum dot significantly reduces the effects of disorder
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and smooth gate potentials compared to more conventional
proximitized semiconductor nanowire systems [15–18].

The conventional nanowire SC heterostructures left several
challenges open, such as to pin down the correct effective
low-energy model. Meanwhile, the microscopic modeling of
the new quantum-dot platform is tentatively simpler and more
closely tied to the original Kitaev toy model. Very recently,
using three quantum dots, and working at the “sweet spot”
th = � (where the electronic hopping th and superconducting
coupling � are equal in magnitude) [16] two peaks in tun-
neling conductance measurements were observed interpreted
as localized MZMs. The topological protection of MZM in-
creased compared to the Kitaev experiments with two sites
[16,17]. In the quantum-dot system the MZMs are perfectly
localized onsite at the “sweet spot” th = �. Remarkably, an
enhancement of the excitation gap using Yu-Shiba-Rusinov
states was shown experimentally in quantum-dot systems
[18]. These quantum-dot systems offer a promising platform
for quantum information processing with MZMs [19,20],
where the manipulation of MZMs can be precisely controlled
using local gates. The controlled movement of MZMs across
three quantum dots has been experimentally realized recently
by tuning the chemical potential of the outer dots [21].

The optimal transport of MZMs is crucial for braiding
or fusion of MZMs in the broad framework of topological
quantum computation [22–24]. However, an important issue
is that the manipulation of MZMs in quantum-dot systems
for such applications must be completed within the quasi-
particle “poisoning” time of the MZMs [16]. Specifically,
a rapid movement of MZMs can induce quasiparticle exci-
tations between the ground-state manifold and the excited
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FIG. 1. Schematic representation of the movement of the right
edge MZM γ2 in a coupled quantum-dots system using individually
tunable gates attached to each quantum dot. (a) At time t = 0, the
system has two MZMs (γ1, γ2) located on the left and right edges
of the system at the sweet-spot th = �. (b) At time t = t0, the right
edge MZMs moved to site i = i0 by using a time-dependent onsite
chemical potential μ(t ) (μ0 is the height of the potential wall). The
onsite chemical potential can be tuned by application of local gates
attached to quantum-dots with quench rate τ . The blue color regions
are topological while the red color regions are nontopological.

states, resulting in the loss of quantum information. Therefore,
it is essential to manipulate MZMs within a finite window
in time that (i) makes quantum computation doable, while
simultaneously (ii) minimizing unwanted diabatic transitions
[25–27].

For nanowire systems, the optimized transport of MZMs
has been proposed in several studies, primarily using a single-
particle formalism [28–31]. In arrays of tunable gates, the
diabatic error during MZM movement has been explained
using a simple Landau-Zener description [29]. For MZM
transport using a single moving potential wall, it has been
shown that a critical velocity, vcrit = �eff (the effective gap),
exists above which the moving-frame Hamiltonian becomes
gapless, resulting in the loss of topological protection for
MZMs [30,32]. Recently, in noninteracting nanowire sys-
tems, it was demonstrated that an optimal number of gates
is required to move MZMs effectively while minimizing
diabatic error [33]. However, the diabatic error in inter-
acting systems remains largely unexplored [34,35], despite
its significant role and impact on MZM-based quantum
computing.

In this work, we analyze the diabatic errors that arise
during the movement of MZMs in an interacting quantum-
dot system, employing a many-body formalism. Compared to
nanowires, in quantum-dot systems at the sweet spot, MZMs
are localized on single sites of the left and right edges of
the Kitaev chain [15,16]. To enable the movement of MZMs,
we assume that each quantum dot is connected to a time-
dependent gate, which modulates the local chemical potential
of the individual quantum dot [22]. This modulation creates
a moving potential wall (see Fig. 1) by transitioning a topo-
logical quantum dot (blue) to a nontopological quantum dot
(red).

To study diabatic errors during the movement of MZMs
in the quantum-dot system, we calculate the time-dependent
fidelity [33] as well as the time-dependent local density-of-
states (LDOS) for each quantum dot [35,36]. First, we focus
on the height of the potential wall required to move the
localized MZM from one quantum dot to another. We find
that optimizing the wall height is crucial to maintaining the
well-localized behavior of the MZM, and measuring the local
density-of-states plays a vital role in this optimization. Sec-
ond, we analyze the effects of the nearest-neighbor Coulomb
interaction on diabatic errors during the movement of MZMs.
In realistic quantum dot systems the hopping and pairing
terms may not be perfectly equal for a moderate number of
quantum dots, leading to disorder in these terms [12,16]. For
this reason, we investigate the diabatic error in the presence
of disorder in the hopping and pairing terms and find that
the diabatic error increases very slowly for moderate disorder.
However, a further increase in disorder strength leads to a
jump in the diabatic error. Third, we investigate the diabatic
error during MZM movement in quantum-dot systems for
the case when multiple gates are tuned simultaneously, using
both linear and sine-squared ramping protocols. We find that
the sine-squared ramping protocol is much more efficient and
produces significantly less error than the linear ramp protocol.
Our results show that for slower tuning rates of the gate
potentials, the diabatic error is significantly reduced in the
case of multiple-gate tuning compared to single-gate tuning.
Finally, using six quantum-dots, we estimate the timescale
to move the MZMs in realistic quantum-dot experimental
setups [16].

The organization of the manuscript is as follows. Section II
introduces the interacting Kitaev model for quantum-dot
systems at the sweet spot and provides details about our
numerical simulations. Section III presents the results of our
study for the movement of MZMs, including the effect of the
wall height (Sec. III A), nearest-neighbor Coulomb repulsion
(Sec. III B), and disorder in the hopping and pairing terms
(Sec. III C). Section III D compares the diabatic error during
the movement of MZMs for simultaneous and sequential gate
tuning. Finally, Sec. IV provides our conclusions and discus-
sion. In the Appendices, we include results on the nonanalytic
behavior of the many-body gap (Appendix A) and the diabatic
error during MZM movement in the presence of disorder in
the onsite potential (Appendix B).

II. MODEL AND METHODS

The recent progresses in quantum-dot systems have en-
abled the experimental realization of two- and three-sites
Kitaev chains [15,16]. In these setups, spin-polarized quan-
tum dots and short superconductor-semiconductor hybrids
are coupled by elastic cotunnelling (ECT) and crossed An-
dreev reflection (CAR) [15,16]. This configuration allows for
tunable single-electron hopping t (ECT) and triplet pairing
� (CAR), both mediated by Andreev bound states in the
hybrid segments [20]. These couplings in the quantum-dots
systems are tuned by electrostatic gates connected to the SC-
SM hybrid segment and provides all the key ingredients for
implementing artificial Kitaev chains [15]. The Kitaev chain
Hamiltonian for spinless fermions, with hopping t and p-wave
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pairing �, can be described as [1]

H0 = −th

N−1∑
i=1

(c†
i ci+1 + H.c.) + V

N−1∑
i=1

nini+1

×�

N−1∑
i=1

(cici+1 + H.c.), (1)

where ci(c
†
i ) is the fermionic annihilation (creation) opera-

tor, ni = c†
i ci is the number operator, and th and � are the

nearest-neighbor hopping and SC pairing amplitudes, respec-
tively. Throughout the calculation, we set th = 1 and � = th
(unless stated otherwise), a condition that has been realized in
quantum-dot systems [15]. In the case of a two-site quantum-
dot system, two perfectly localized MZMs were observed at
the sweet spot 2th = 2� = 25 µeV. The tuning of the coupling
ratio th/� = 1 is easily achieved by adjusting the electrostatic
gate potential in the quantum-dot system, which enforces the
product-state property of the ground state and thereby yields
maximally localized Majorana states [37]. Using the Hamil-
tonian in Eq. (1), we calculate the ground state using exact
diagonalization (ED) [35] and/or state-of-art density matrix
renormalization group (DMRG) [38,39]. At time t = 0, for
the parameters th = � = 1, and V = 0, we have two onsite
localized MZMs (γ1 and γ2) on the left and right edges of
the Kitaev chain [see Fig. 1(a)]. The right edge MZM (γ2) is
moved using sequential operations of the time-dependent gate
potential [Fig. 1(b)]. We introduce the time dependence by
adding a time-dependent chemical potential in the Hamilto-
nian as follows [35]:

H (t ) = H0 +
∑

i

μi(t )ni, (2)

μi(t ) =
⎧⎨
⎩

0, i < i0,
μ0

t
τ
, if i = i0,

μ0, i > i0,
(3)

where 1/τ is the quench rate. We discretize the time steps
as t = k�t , where �t = 0.001 is a small time step, and k
is an integer chosen such that the chemical potential at site
i = i0 varies nearly linearly from 0 to μ0 over a time τ .
We first choose a linear time-dependent chemical potential
since, in quantum-dot experiments for the two-site Kitaev
model, the chemical potentials of quantum dots are linearly
tuned by voltages applied via gates [15]. We also compare
the sine-squared ramping protocol with the linear ramping
protocol. The time-dependent onsite chemical potential can be
visualized as a moving potential wall that grows at site i = i0
over time τ , then shifts to the next site i = i0 − 1, and grows
again, as illustrated in Fig. 2. This process is analogous to gate
switching in real experimental setups. As a result, the MZM
on the right edge moves toward the center, while the MZM on
the left edge remains localized (Fig. 1).

The ground state, |ψ (0)〉, of H0 in Eq. (1) was calculated
using ED/DMRG and then evolved with the time depen-
dent Hamiltonian H (t ) in Eq. (3) using the time-evolution
operator, U (t ) = T exp(−i

∫ t
0 H (s)ds), where T is the time

ordering operator [40]. Numerically, the time-evolution was
performed using time-dependent ED and the time-dependent
variational principle (TDVP) using the ITensor Library [41].

FIG. 2. Ramping protocol to move a MZM through the system.
At time t/τ = 0, we prepare the system in the ground state with
all the onsite potential set at 0. For a time interval 0 � t/τ � 1,
the onsite potential at the right most site (site i = 12) is increased
from 0 to μ0 linearly and stays constant on-wards. Later on, in the
time interval 1 � t/τ � 2, the onsite potential at the rightmost site
remains constant, but the onsite potential at the next site (i = 11)
increases linearly until it reaches μ0.

One-dimensional chains of varying lengths up to L = 36
were studied and the bond dimension for DMRG calcula-
tions were kept up to m = 120 which ensures an accuracy
involving a truncation error around 1.0 × 10−6. The fidelity
was then calculated by calculating the overlap of the ground
state wave-function of the instantaneous Hamiltonian HI with
the time evolved wave-function, i.e., F (t ) = |〈ψg(I )|ψ (t )〉| =
|〈ψg(I )|U (t )|ψ (0)〉|. We then calculate the diabatic error via
f (t ) = 1 − F (t ).

In addition to fidelity, we also calculate the time-dependent
local density-of-states (at zero temperature). As described in
Ref. [35], first we time evolve the initial state |ψ (0)〉 up
to time t = NRτ (here NR is the number of sites where the
chemical potential reaches its maximum value μ0) using the
time-dependent Hamiltonian H (t ) as: |�(t )〉 = U (t )|ψ (0)〉.
To obtain the time and energy resolved local density-of-states,
we calculate the double-time Green function G(t, t ′) [42],
using the instantaneous Hamiltonian Hf = H (t = t f ) at time
t f = NRτ :

Gelec
j (t, t ′) = 〈�(t )|c†

j e
iHf t ′

c je
−iHf t ′ |�(t )〉. (4)

The time-dependent energy resolved LDOSelec(ω, j, t)
for electrons is given by LDOSelec(ω, j, t ) =
1
π

Im
∫ T

0 dt ′ei(ω+iη)t ′
iGelec

j (t, t ′). In practice, we use
T = 60 for the integration with respect to t ′, and a
broadening η = 0.1. Similarly as described in Ref. [35],
we also calculate the hole portion of the local density-
of-states LDOShole(ω, j, t). The time-dependent total
local density-of-states at site j can be obtained as
LDOS(ω, j, t ) = LDOShole(ω, j, t ) + LDOSelec(ω, j, t ).

III. RESULTS

In this section, we present the results for the movement
of Majorana zero modes (MZMs) in quantum-dot systems,
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FIG. 3. (a) Schematic representation of left and right MZMs (γ1, γ2) at time t = 0 and for L = 12 quantum-dots at the sweet-spot th = �.
(b) Site-dependent local density-of-states LDOS(ω, j, t ) vs site j, at t = 0, ω = 0, and V = 0.05. The sharp peaks at j = 1 and 12 represent
localized MZMs at the edge sites. The inset shows the local density-of-states LDOS(ω) vs ω at t = 0 for site j = 1. (c) The diabatic error
f (t ) as function of t/τ for different values of μ0 and for τ = 60. (d) The site-dependent local density-of-states LDOS(ω, j, t ) vs site j at time
t/τ = 6 for different values of μ0. For larger values of μ0 = 12, the MZM γ2 is sharply localized at j = 6. For lower values of μ0, the MZM
γ2 delocalizes over a few sites, which is not a suitable case to perform real quantum computation or braiding processes. The inset shows the
LDOS(ω, t ) at site j = 6 for μ0 = 12 and τ = 60 at t/τ = 6.

focusing on the effects of the wall height, the strength of
the nearest-neighbor Coulomb interactions, and the effect of
disorder in the hopping and pairing terms. Furthermore, we
compare the diabatic error during the MZM movement when
multiple gates are tuned simultaneously.

A. Effect of wall height during the movement of MZMs

In this subsection, we analyze the effect of wall height
on the movement of the right edge MZM (γ2), by varying
the constant term μ0 in Eq. (3). To move the MZM from
one site to another within a finite time t , the onsite chem-
ical potential, μi(t ), must be larger than the critical value
μc > 2th [22], to switch a site from a topologically non-
trivial phase to a trivial phase. To track the movement of
the MZM, we calculate both the time-dependent fidelity and
the local density of states. At t = 0, we choose parameters
th = � = 1, L = 12, and V = 0.05, resulting in two local-
ized MZMs (γ1, γ2) at the left and right edges of the chain,
as shown in Fig. 3(a). The site-dependent local density-of-
states, LDOS(ω, j, t ), at t = 0, exhibits sharp peaks at sites
j = 1 and 12, indicating two localized MZMs on the left
and right edges of the Kitaev chain [Fig. 3(b)]. The inset
of Fig. 3(b) shows the electron and hole part of the local
density-of-states LDOS(ω) as a function of ω for the right
edge site j = 12 and at t = 0. The equal-height sharp peaks
of the electron and hole components of LDOS(ω) at ω = 0
confirm the presence of a localized γ2, on the right edge of the
chain [43–45].

As described in the previous section, the right-edge Majo-
rana zero mode (MZM), γ2, can be moved via the sequential
modulation of the onsite chemical potential, μi(t ). In Fig. 3,

we examine the diabatic error, f (t ), for three different cases
where γ2 is moved using wall heights with μ0 = 3, 6, and 12.
The MZM at the right edge is transported from site j = 12
to j = 6 in the same total time T for the three cases. As
shown in Fig. 3(c), the diabatic error is the smallest for μ0 = 3
and increases with higher wall heights. This behavior arises
because the construction of higher walls requires a faster rate
of change in μi(t ) compared to lower walls (for the cases
when the total ramp time τ is kept fixed). The sudden change
in chemical potential at the start of wall formation at each
site j induces oscillations in the diabatic error, f (t ). For faster
changes in μi(t ), these oscillations exhibit larger amplitudes
due to the more pronounced nonanalytic behavior associated
with a rapid modulation of the chemical potential [33,46,47].
Furthermore, we observe that the effective gap (defined as
the energy difference between the ground state and the first
excited state) shows discontinuities only at the beginning of
increasing the onsite chemical potential at each site (see Fig. 7
in the Appendix A).

In Fig. 3(d), we present the real-space, time-dependent
local density-of-states, LDOS(ω, j, t ), for three different wall
heights, μ0 = 3, 6, and 12, at time t/τ = 6. Interestingly,
for μ0 = 3, the right-edge MZM, γ2, is not well localized
near the wall at site j = 6, even though the diabatic error
is smallest in this case. As μ0 increases from 6 to 12, the
right-edge MZM, γ2, becomes increasingly localized at site
j = 6 [see Fig. 3(d)]. A well-localized MZM is crucial for
the braiding of MZMs, as it reduces the possibility of overlap
with other nearby MZMs. In the inset of Fig. 3(d), we show
the time-dependent electron and hole components of the local
density-of-states, LDOS(ω, t ), as a function of ω at t/τ = 6.
The equal-height peaks of the electron and hole components
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FIG. 4. (a) Site-dependent local density-of-states LDOS(ω, j) vs
j at t = 0 and for different values of the Coulomb interaction V using
a system size L = 16. For smaller values of V � 0.1, the MZMs are
localized sharply on the edges. With an increase in V , the MZMs are
localized exponentially, namely spread over a few more sites. The
inset shows the LDOS(ω) vs ω for site j = 16 and different values
of V . The diabatic error f (t ) vs t/τ for different values of τ and
for Coulomb interactions as shown in (b) V = 0.1, (c) V = 0.5, and
(d) V = 1.0. The diabatic error increases with increase in V and for
smaller values of τ , namely for fast movement, as intuition indicates.

of LDOS(ω, t ) at ω = 0 confirm the localization of γ2 at site
j = 6 at time t/τ = 6.

The main message of this subsection is that in addition to
fidelity, it is crucial to measure the local density-of-states to
ensure the accurate movement of localized MZMs. Namely,
fidelity alone does not provide the optimal conditions for
MZM movement, as the diabatic error remains minimal for
slower movement irrespective of the wall height. In contrast,
the site- and time-dependent local density-of-states offers a
clearer understanding of the localization or delocalization of
MZMs during their transport.

B. Effect of nearest-neighbor Coulomb interactions

In this subsection, we explore the effect of repulsive
nearest-neighbor Coulomb interactions, V , on the movement
of the right-edge MZM, γ2, in a moderately sized quantum-dot
array with L = 16. For very small quantum dot systems, the
nearest-neighbor Coulomb interactions are highly detrimental
to the stability of MZMs, as the finite V leads to an overlap
between the MZMs [36]. In realistic scenarios, the Coulomb
interactions between neighboring quantum dots should be
always present. However, its influence in moderately sized
quantum dot chains is not significant. This is because the
nearest-neighbor Coulomb interactions, V , can be screened
and minimized by the central hybrid superconducting region
situated between neighboring quantum dots [48].

Figure 4(a) shows the site-dependent local density-of-
states, LDOS(ω, j, t ), at t = 0, for different values of the
Coulomb interaction, V , using a system size of L = 16.
For smaller values of V , the LDOS(ω = 0, j, t = 0) exhibits

sharply localized onsite peaks at the edge sites j = 1 and
j = 16. However, as V increases, the local density-of-states
becomes slightly delocalized over multiple sites. In the inset
of Fig. 4(a), we plot the diabatic error f (T ) at the final time T
(when the right edge MZM γ2 reaches site j = 10). In the
lower panel of Fig. 4, we plot the time-dependent diabatic
error, f (t ), for different values of V while moving the right-
edge MZM, γ2, from site j = 16 to site j = 10. For faster
movement of γ2 (corresponding to smaller values of τ = 24),
the diabatic error increases more rapidly with increasing re-
pulsive Coulomb interaction, V . This occurs because, as V
increases, the effective energy gap (the difference between
the ground state and the first excited state) decreases [49,50],
leading to stronger interaction-induced nonadiabatic transi-
tions. Consequently, the faster modulation of μi(t ) causes the
time-evolving state, |ψ (t )〉, to overlap with multiple higher-
energy states [35]. This overlap with higher-energy states
results in an increased diabatic error for smaller τ values with
an increase in V [see the inset of Fig. 4(a), and Figs. 4(b), 4(c)
and 4(d)].

For τ > 36, we observe that the diabatic error decreases
significantly compared to the faster changes in the gate po-
tential, μi(t ). Interestingly, for the slow movement of the
right-edge MZM, γ2, the diabatic error f (T ) does not vary
significantly with increasing V up to moderate values of the
Coulomb repulsion [see the inset of Fig. 4(a)]. This behavior
arises because the slower movement of the MZM generates
fewer quasiparticle excitations above the reduced effective
gap. We find that the time-evolved state, |ψ (t )〉, exhibits a
very small overlap with higher-energy excited states, resulting
in a very small diabatic error, f (t ), even as time progresses
for moderate values of V [see the inset of Fig. 4(a) and
the full Figs. 4(b), 4(c) and 4(d)]. These results show that
in the presence of a repulsive Coulomb interaction V , we
need to move the MZMs using a quite slow rate to minimize
the diabatic error. In the presence of Coulomb repulsion, the
effective gap decreases, and a faster rate of change induces
more quasiparticle excitations, leading to the loss of quantum
information.

C. Effect of disorder in hopping and pairing terms

Experimental systems are inevitably prone to disorder,
which may add additional features to the pristine system
studied in the previous sections. To understand the effect
of disorder on the transport of MZMs, we here add a site-
dependent disorder component in the hopping amplitude (t k

h )
as well as in the SC pairing amplitude (�k) [12] drawn from
a normal distribution given by

g(x) = 1

σ
√

2π
e− 1

2 ( x−a
σ )2

, (5)

where σ is the standard deviation and a is the mean of the
distribution. We assume that the onsite chemical potential at
time t = 0 is zero for each site, achievable in quantum dot
experiments by tuning the gate potentials attached to individ-
ual quantum dots [16]. For the calculations, we choose the
distribution to be centered around zero (a = 0) with different
standard deviations σ up to 0.6.
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FIG. 5. (a) Site-dependent disorder averaged local density-of-
states LDOS(ω, j) vs j at time t = 0 for different values of disorder
strength σ introduced in the hoppings t h

k and in the pairing terms �k .
Inset shows the LDOS(ω, j) vs ω at site j = 16 and for σ = 0.6. The
equal-height peaks of the electron and hole parts of the LDOS(ω)
illustrate the existence of MZMs in the system for σ � 0.6 at t = 0.
(b) The disorder averaged diabatic error f (t ) in the system during
movement of the right MZM γ2 from site j = 16 → 10, for differ-
ent values of σ . Clearly, by increasing σ the diabatic error slowly
increases with time t/τ . For σ = 0.6 the diabatic error takes a larger
jump and the system may have low-quality MZMs. (c) Electron and
hole parts of the time-dependent LDOS(ω, j, t ) at site j = 10 for
σ = 0.2 for a particular value of the disorder realization (taken from
a Gaussian distribution).

For the static case, the results in Ref. [12] demonstrate that
even a small number of quantum dots is sufficient to support
a robust pair of localized MZMs under moderate disorder,
in contrast to nanowire systems. We then study the effect of
disorder on the movement of the right-edge MZM, γ2, for a
moderately sized quantum dot array with L = 16.

Figure 5(a) shows the site-dependent disorder averaged
(using 40 realizations of disorder) LDOS(ω, j, t ) at t = 0 for
varying σ up to 0.6 and nearest-neighbor interaction V = 0.5.
We can observe that the MZMs are still localized at the edges
of the quantum-dot array but have developed a tail with finite
DOS, which increases as σ increases. This is an expected
behavior because MZMs are exponentially localized, with
the shortest localization length for the case t h

k /�k = 1. As
disorder steers t h

k /�k away from unity, the localization length
increases, and we start to observe the exponential tail in the
LDOS. The inset of Fig. 5(a) shows the LDOS as a function
of ω for electron and hole at j = 16 and σ = 0.6, at t = 0.
Again, the equal-height sharped peaks of the electron and hole
portions at ω = 0 confirms the presence of the localized MZM
γ2. Additionally, we obtain a finite LDOS for ω close to the
SC coherence peak for the electron and hole part. This is due
to the fact that the disorder introduces localized states near the
SC coherence peaks, which extends into the SC gap.

Figure 5(b) shows the disorder-average diabatic error f (t )
acquired by the system during the movement of the MZM γ2

from site j = 16 to site j = 10 for different values of σ up to

0.6 and a fixed τ = 36. We find that the diabatic error slowly
increases with time for all values of σ , but for weak disorder,
such as σ = 0.2, f (t ) is very close to the pristine system
(σ = 0.0). However, for stronger disorder, such as σ = 0.6,
we found a sudden increase in the diabatic error. This is due
to the fact that a strong deviation of t k

h /�k from 1 reduces
the many-body gap and makes it easier to have low-energy
excitations as we try to move the MZM. Additionally, as
disorder increases, the localization length of MZMs grows
[Fig. 5(a)], leading to greater overlap with the left MZM (γ1)
during the movement of the right MZM (γ2) from site j = 16
to site j = 10. This overlap contributes to a sudden increase
in diabatic error for σ � 0.4 [51,52]. In Fig. 5(c) we show
the LDOS(ω, j, t ) for j = 10 at t/τ = 6 and σ = 0.2 for a
particular realization. We found sharp electron and hole peaks
of equal height, confirming the movement of the MZM from
j = 16 to j = 10 in a time t/τ = 6.

These findings highlight that quantum dot systems pro-
vide a robust platform for quantum information processing
using MZMs, even in the presence of disorder, in contrast
to nanowire systems [53]. For moderately sized quantum-
dot systems with disorder and interactions, the diabatic error
remains small during the movement of MZMs at speeds
achievable in quantum-dot experiments using time-dependent
gate potentials. We also calculated the diabatic error upon
introducing disorder in the onsite potential and found that it
remains relatively small up to moderate disorder strengths
compared to semiconducting nanowire systems (details are
provided in Appendix B).

D. Movement of the MZMs by tuning multiple
gates simultaneously

In quantum-dot experiments, the gate attached to an in-
dividual quantum dot can be tuned either sequentially or
simultaneously across multiple gates [15,16]. In this subsec-
tion, we compare the diabatic error during the movement of
the right-edge MZM, γ2, for two scenarios: (i) when multiple
gates are tuned simultaneously, and (ii) when the gates are
tuned sequentially, one by one. To illustrate this, we consider
a setup involving six quantum dots to perform the move-
ment of the right-edge MZM, γ2 [see Fig. 6(a)], which is
experimentally feasible in current quantum-dot setups. We
then tune the chemical potential, μ(t ) = μ0t/τ (where μ0 =
12), of the three rightmost quantum dots simultaneously [see
Fig. 6(b)] at a quench rate of 1/τ . We chose very small val-
ues of repulsive Coulomb interaction V = 0.001, to prevent
the overlap of MZMs in the small system size L = 6 that
we consider for our numerical simulation. In Fig. 6(c), we
present the time-dependent, site-dependent local density-of-
states, LDOS(ω, j, t ), for different values of t/τ , when the
three gate potentials, μ(t ), are tuned simultaneously with τ =
36. Interestingly, for smaller values of t/τ , the local density-
of-states exhibits delocalized peaks spanning three sites, with
a higher weight on site j = 3. At the final time, t/τ = 1, the
LDOS(ω, j, t ) displays two localized peaks on sites j = 1
and j = 3, indicating that the right-edge MZM, γ2, has been
successfully transferred from site j = 6 to j = 3.

In Fig. 6(d), we plot the diabatic error, f (t ), for the move-
ment of γ2 under the simultaneous tuning of the chemical
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FIG. 6. Schematic of the movement of the right-edge MZM, γ2, by simultaneously tuning three gates in a six-quantum-dot system. (a) At
time t = 0, the system contains two MZMs (γ1, γ2), located at the left and right edges, when operating at the sweet spot th = �. (b) At time
t = T , the right-edge MZM has moved to site j = 3 via simultaneous tuning of the time-dependent onsite chemical potentials, μ(t ), applied
to individual quantum dots. (c) Time-dependent local density of states, LDOS(ω, j, t ), for different values of t/τ using τ = 36. (d, f) Diabatic
error, f (t ), for the simultaneous movement of three gate potentials as a function of t/τ and for different values of τ using: (d) linear-ramp
protocol, (f) sine-squared ramp protocol. (e, g) Diabatic error, f (t ), for the sequential movement of the three gate potentials as a function of
t/τ and for different values of τ using: (e) linear-ramp protocol, (g) sine-squared ramp protocol.

potential of the three quantum dots, for different values of τ .
For fast movement (τ = 12), the diabatic error is significantly
larger and exceeds the values observed for the sequential
movement of the MZM [see Figs. 6(d) and 6(e)]. This be-
havior is expected, as fast tuning injects a large amount of
energy over a short period, leading to increased quasiparticle
excitations above the gap. Consequently, the time-evolving
state, |ψ (t )〉, exhibits a substantial overlap with multiple high-
energy states, resulting in a larger diabatic error. For lower
values of the quench rate, 1/τ , the diabatic error in both
cases decreases to a smaller value [see Fig. 6(d)]. Interest-
ingly, the diabatic error, f (t ), for the simultaneous tuning of
three gates is smaller [Fig. 6(d)] compared to the sequential
movement of the right-edge MZM [Fig. 6(e)], even though
the total time required for the sequential movement of γ2 is
three times longer than that for the simultaneous movement.
This difference arises because, in the sequential movement,
the energy levels undergo three distinct changes as the chem-
ical potential, μi(t ), is tuned one gate at a time during the
movement of γ2. This introduces nonanalytic behavior for
each gate-tuning event and leads to an accumulation of dia-
batic error with increase in time [33,46,47]. In contrast, with
simultaneous multiple gate tuning (at a slower quench rate,
1/τ ), the effective gap is modified only once, significantly
reducing the occurrence of nonanalytic behavior compared to
the sequential movement of γ2.

In Figs. 6(f) and 6(g), we analyze the diabatic error us-
ing a smooth time-dependent onsite potential [33,34], μ(t ) =
μ0 sin2( πt

2τ
), for two cases: (i) when multiple gates are tuned

simultaneously [Fig. 6(f)] and (ii) when the gates are tuned
sequentially, one by one [Fig. 6(g)]. For faster movement
(τ = 12, 24) with simultaneous tuning of the smooth time-
dependent gate potential, the diabatic error is comparable to
that of linear gate potential tuning. This is expected, as a
large amount of energy is quenched in a short time. Interest-
ingly, for sequential and smooth time-dependent gate tuning

[Fig. 6(g)], the diabatic error remains significantly lower in
the range 24 � τ � 48 compared to all other cases of dia-
batic movement [Figs. 6(d), 6(e) and 6(f)]. This reduction
occurs because sequential smooth tuning mitigates nonan-
alytic behavior at each gate-tuning event in comparison to
linear gate potential tuning [54]. Remarkably, for larger τ �
60 (slower tuning), the simultaneous tuning of the smooth
time-dependent gate potential [Fig. 6(f)] results in the lowest
diabatic error (∼10−6) over time.

Next, we estimate the timescale (in SI units) required to
move the right-edge MZM, γ2, from site j = 6 to j = 3
during the multisite tuning of gate potentials with a switch-
ing time of τ = 36. Using the uncertainty relation, τ h̄/�eff,
where the effective gap in quantum dot systems is 25 µeV <

�eff < 75 µeV [15,18], we estimate the required time to be
in the range of 0.316 ns to 0.947 ns. In Ref. [16], the life-
time of the target qubit was estimated to be approximately
1 ms using a five-quantum-dot system, which is signifi-
cantly larger than our estimated time to move the MZM, γ2,
from site j = 6 to j = 3. For the sequential movement of
the MZM, the estimated time is approximately three times
longer than that for the simultaneous tuning of the three
gates.

The above results demonstrate that the movement of
MZMs in quantum-dot systems for quantum information pro-
cessing can be completed well within known qubit lifetimes
[16], ensuring robustness against decoherence and quasiparti-
cle poisoning during the process. Furthermore, we conclude
that an optimal strategy for quantum information processing
(such as braiding or fusion) in a network of quantum dots
involves a combination of simultaneous and sequential MZM
movement using a smooth time-dependent gate potential. The
simultaneous movement of MZMs enhances delocalization
over multiple sites, whereas the sequential movement pro-
vides better control and preserves the localized nature of
MZMs.
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IV. CONCLUSION AND DISCUSSION

In conclusion, we investigate the diabatic errors associ-
ated with the movement of Majorana zero modes (MZMs) in
quantum dot systems at the sweet spot, where the electronic
hopping equals the superconducting coupling. Our findings
highlight that the localized onsite nature of MZMs in quantum
dots at the sweet spot, combined with the advantages of a
moderately sized system, provides enhanced robustness and
significantly reduces errors during MZM movement, in con-
trast to nanowire systems where MZMs exhibit localization
but across multiple sites. Using time-dependent many-body
numerical methods, we analyze the diabatic errors during
MZM movement. Our results reveal that maintaining the well-
localized behavior of MZMs during movement requires an
optimal potential wall height. Importantly, probing the time-
dependent local density-of-states is essential for capturing the
well-localized transfer of MZMs, as fidelity measurements
alone are insufficient.

In the presence of nearest-neighbor repulsive Coulomb in-
teractions, minimizing diabatic errors requires slower quench
rates due to the effective gap reduction and increase in co-
herence length with stronger interactions. Interestingly, we
find that moderate levels of disorder in hopping and pairing
terms (σ � 0.4) do not significantly impact the diabatic er-
rors. However, with further increase in disorder, we observe
a sharp increase in diabatic errors, signifying MZM quality
degradation caused by increased coherence length and re-
duced effective gap. We also observed a similar trends in
diabatic error for the movment of MZMs, in case of onsite
quench disorder.

Our comparative study using linear and smooth gate tun-
ing functions revealed that smooth gate tuning generates less
diabatic error compared to linear gate potential tuning dur-
ing MZM movement. We also find that simultaneous smooth
gate potential tuning outperforms sequential tuning for slower
quench rates, making it advantageous for efficient MZM
transport. However, in quantum dot networks designed for
braiding experiments, a combination of simultaneous and se-
quential tuning offers greater control and better preserves the
localized nature of MZMs. Such controlled movements are
essential for minimizing overlaps with other MZMs, ensuring
optimized quantum information processing in quantum dot
networks using MZMs.

Finally, using just six quantum-dots, we estimated the
timescale to move the MZM from end sites to third sites.
We show that our predicted timescale (0.3 to 0.9 ns) to
move MZM in realistic setups is well within the qubit life-
time(1ms). We strongly believe that our novel theoretical
results of diabatic error for the movement of Majoranas in the
one-dimensional chain will be helpful for fusion and braiding
experiments in the recently developed quantum-dot setups.
Our predictions, based on time-dependent LDOS and fidelity
measurements, align with current experimental capabilities,
paving the way for future advancements in quantum-dot-
based topological quantum computation.
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APPENDIX A: NONANALYTIC BEHAVIOR OF
MANY-BODY GAP

To investigate the origin of the oscillations in the adiabatic
error, we examined the variation in many-body energy levels
as the static onsite chemical potential changes linearly, defined
as μi = μ0n/12 (where n is an integer varying from 0 to 12).
In Fig. 7, we present the energy difference between the first
excited state (E3) and the ground state (E2), which is nearly
degenerate with E1, as a function of the sequential total gate
potential. The total gate potential is defined as μseq = ∑

i μi,
with μ0 = 12. As illustrated in Fig. 7, the energy difference
(E3 − E2) exhibits noticeable jumps or changes only at the
initial stages of increasing the chemical potential (μi) at each
site.

APPENDIX B: DISORDER IN ONSITE POTENTIAL

Figure 8 shows the effect of disorder similar to Fig. 4
except for onsite disorder. We study the movement of the
right-edge MZM, γ2, for a moderately sized quantum dot
array with L = 32. In Fig. 8(a), we show the site-dependent
LDOS(ω, j, t ) at t = 0 for th = � = 1 and V = 1.0. We
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FIG. 8. Disorder averaged local density-of-states LDOS(ω, j)
vs j at t = 0 for different values of disorder strength σ , intro-
duced in the onsite chemical potential μ j , and th = � = 1, V = 1.0,
L = 32, μ0 = 12. Inset shows electron and hole parts of the local
density-of-states LDOS(ω) vs ω at t = 0, j = 1 and for σ = 0.
(c) Disordered averaged electron and hole part of the local density-
of-states LDOS(ω) vs ω at t = 0, j = 1 and for σ = 1.2. (b) The
disorder averaged diabatic error f (t ) in the system while moving the
right MZM γ2 from site j = 32 → 24, for different values of σ and
with increase in time t/τ .

found MZMs still localized at both edges but they develop a
tail in the bulk, which increases with the strength of disorder.
In the inset, we show the LDOS(ω, j, t ) at site j = 1 and
time t = 0. We find equal-height electron and hole peaks,
confirming the presence of MZMs. In Fig. 8(b), we show
the accumulation of diabatic error with time as we move
the right-edge MZM, γ2, from site j = 32 → 24. For small
and moderate values of disorder strength, namely for σ = 0.4
and 0.8, the effect of disorder is small. For larger disorder
strengths, namely for σ = 1.0 and 1.2, the diabatic error
increases fast. In Fig. 8(c) we show the LDOS(ω, j, t ) for
j = 1, t = 0, and σ = 1.2 for a particular realization. We
still find equal-height peaks for electron and hole, confirming
the presence of a MZM, but the movement of these MZMs
acquire large diabatic errors due to low-quality MZMs. We
also see finite LDOS away from ω = 0 because disorder
introduces localized states close to the superconducting co-
herence peaks. These results demonstrate that the diabatic
error remains small up to moderate values of disorder and
interactions. In contrast, for nanowire systems, the effec-
tive gap is expected to nearly close under moderate disorder
strength and for system sizes comparable to quantum-dot
systems. Meanwhile, the effective gap in quantum-dot sys-
tems remains robust under moderate disorder and interactions,
resulting in lower diabatic errors compared to nanowire
systems [53].
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