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We propose a minimalist architecture for achieving various crystalline-symmetry-protected Majorana modes
in an array of coupled quantum dots. Our framework is motivated by the recent experimental demonstrations
of two-site and three-site artificial Kitaev chains in a similar setup. We find that introducing a π -phase domain
wall in the Kitaev chain leads to a pair of mirror-protected Majorana zero modes located at or near the junction.
Joining two π junctions into a closed loop, we can simulate two distinct classes of two-dimensional higher-
order topological superconducting phases, both carrying symmetry-protected Majorana modes around the sample
corners. As an extension of the π junction, we further consider a general vertex structure where n Kitaev chains
meet, i.e., a Kitaev n vertex. We prove that such an n vertex, if respecting a dihedral symmetry group Dn,
necessarily carries n vertex-bound Majorana modes protected by the Dn symmetry. Resilience of the junction and
vertex Majorana bound states against disorder and correlation effects is also discussed. Our architecture paves
the way for designing, constructing, and exploring a wide variety of artificial topological crystalline phases in
quantum-dot experiments.
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Introduction. Over the past decade, significant research
efforts have focused on topological phenomena protected by
the ubiquitous lattice symmetries in quantum crystals [1–6].
Starting from SnTe [2], various topological crystalline insu-
lators and semimetals have been theoretically predicted and
experimentally revealed in a plethora of compounds, such as
Na3Bi [7], Cd3As2 [8], KHgSb [9], MnBi2nTe3n+1 [10], etc.
This ongoing triumph of material discovery has been greatly
boosted by conceptual advances such as topological quantum
chemistry [11] and symmetry indicators [12–14]. Meanwhile,
crystalline topological superconductors (TSCs) have similarly
gathered substantial research interest [15–18]. However, few
promising real-world candidates for crystalline TSCs have
been proposed and experimental confirmation remains elu-
sive. Notably, most recipes for crystalline TSCs necessitate
unconventional pairing symmetries, such as triplet supercon-
ductivity, which are rare in nature, significantly limiting the
pool of potential candidates.

Motivated by the above challenge, we propose the recently
developed coupled quantum-dot system [19–23] as a viable
avenue to explore various crystalline topological phases of
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superconductors. Recently, the same platform has been ex-
ploited to realize an artificial Kitaev chain with two quantum
dots (QDs) in experiments [24]. Very recently, the successful
experimental realization of a π junction in the Kitaev model
was achieved using just three quantum dots embedded in a
two-dimensional electron gas [25]. We find that a π -phase
junction structure of a similar QD-based Kitaev chain will trap
a pair of Majorana zero modes (MZMs) protected by mirror
symmetry [Figs. 1(a) and 1(b)], which manifests as a building
block to achieve more sophisticated crystalline topological
structures. In particular, by joining a pair of π junctions into a
square, we show that we can realize two different higher-order
TSC phases in two dimensions (2D) with corner-localized
Majorana modes, which are protected by dihedral group sym-
metries D2 and D4, respectively [Figs. 1(c) and 1(d)].

In terms of graph theory, a π junction can be viewed as
a vertex with degree two, where each edge is a separate Ki-
taev chain. This further inspires us to explore the topological
consequence of general vertices with n Kitaev-chain edges
(n > 2), a structure dubbed “Kitaev n vertex” [Figs. 1(e) and
1(f)]. Remarkably, we find that an n vertex, if respecting a
dihedral group Dn, must host n symmetry-indexed Majorana
modes at the vertex. In particular, the vertex-bound states can
be classified into singly degenerate MZMs and symmetry-
enforced Majorana doublets, which exactly correspond to the
1D and 2D irreducible representations of the underlying Dn

group, respectively. As a proof of concept, we provide a model
study of the minimal 4-vertex with nine QDs, confirming
the expected vertex Majorana physics. The robustness of the
above Majorana modes against correlation and disorder ef-
fects is also discussed.
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FIG. 1. Quantum-dot arrays with crystalline-symmetry-
protected Majorana modes. (a) and (b) display two equivalent
geometries of a π -phase junction with φ1 = π and φ2 = 0. The blue
and orange peaks around the junction site denote two π -phase MZMs
with distinct mirror parities. (c) and (d) represent two extrinsic
higher-order TSC phases protected by D4 and D2, respectively. Here
the phase configurations are �B = (φ1, φ2, φ3, φ4) = (π, 0, π, 0)
in (c) and �A = (φ1, φ2, φ3, φ4) = (0, 0, π, π ) in (d). (e) shows a
D3-symmetric Kitaev 3-vertex with φ1 = π and φ2 = φ3 = 0, where
one MZM and one MZD are found around the vertex. (f) shows a
D4-symmetric Kitaev 4-vertex with φ1 = φ2 = π and φ3 = φ4 = 0,
which hosts two vertex MZMs and one vertex MZD.

Mirror-indexed Majorana zero modes. Our setup of
interest is a 1D chain of spin-polarized quantum dots (QDs)
coupled through superconductor-semiconductor hybrids
[24,26–28], which is known to reproduce the famous
Kitaev-chain Hamiltonian [29]

HK =
N−1∑

j=1

(−tc†
j c j+1 + � jc jc j+1) + H.c., (1)

where t denotes the single-electron hopping amplitude
between neighboring QDs, and � j = �eiφ j is the nearest-
neighboring triplet pairing between the jth and j +
1th QDs. In practice, one can fine tune the system
to the “sweet spot” with t = �, where the topologi-
cal Majorana physics stand out. In particular, with c j =

1√
2
e−iφ j/2(γA, j + iγB, j ), the sweet-spot Hamiltonian becomes

HK = −2i�
∑N−1

j=1 γA, j+1γB, j . Here, the Majorana operators
are anticommutating {γα, j, γα′, j′ } = 2δα,α′δ j, j′ and further ful-
fill a self-adjoint condition γ

†
α, j = γα, j . By inspection, the end

Majorana operators γA,1 and γB,N are the only two unpaired
ones that, thus, manifest as non-Abelian Majorana zero modes
(MZMs) [29], whose existence is φ j independent.

Let us now consider two QD chains of equal length and at-
tempt to “glue” them into a long QD chain. At the sweet-spot
limit, such a gluing process is reduced to a simple two-level
problem that describes the coupling of two end MZMs γ I

B
and γ II

A , where the superscript is the chain index. When two
QD chains share the same pairing phase, one can always fuse
and gap out the two MZMs with Hc = −2i�γ II

A γ I
B. Using the

Majorana basis |	〉 = (|γB,1〉, |γA,2〉)T , HK = −�σy respects
both the particle-hole symmetry (PHS) � = σ0K (where K

is the complex conjugation operator) and a mirror symmetry
Mx = σy that spatially switches the dots. Note that both the
spinless and odd-parity nature of the Kitaev chain requires
M2

x = 1 and {Mx, �} = 0.
Remarkably, the interchain gluing process is impossible

when the pairings of the two QD chains differ by a π phase.
To see this, we first note that π -phase geometry implies the
two QD chains have exactly the opposite pairing orders, i.e.,
�(x) = �sgn(x). Here, it is helpful to use the orientation of
the p-wave pairing to define the direction of a Kitaev chain.
In this convention, the QD chains forming a π junction are
of opposite directions, as denoted by the arrows in Fig. 1(a).
The spatial dependence of �(x) not only violates the original
Mx, but also makes the p-wave pairing effectively even parity.
In this case, we can always define a new mirror symmetry
M̃x that is compatible with even-parity pairings, at the cost of
enforcing [M̃x, �] = 0. We then find that M̃x = σx under the
Majorana basis |	〉. As a consequence, any term Hc that cou-
ples γ II

A and γ I
B must satisfy {�, Hc} = [M̃x, Hc] = 0, which

immediately leads to Hc = 0. Therefore, we conclude that
the π -phase domain of a 1D Kitaev TSC must host a pair of
MZMs.

The robustness of π -phase MZMs suggests that they
should be symmetry protected. Indeed, we can combine γ I

B
and γ II

A to form |γ±〉 = 1√
2
(|γ I

B〉 ± |γ II
A ). Owing to [M̃x, �] =

0, we find that

M̃x|γ±〉 = ±|γ±〉, �|γ±〉 = |γ±〉. (2)

Therefore, γ± are MZMs that carry distinct M̃x indices and are
hence protected by M̃x. This guarantees the inability to con-
struct a coupling Hc for the π -phase MZMs, as demonstrated
earlier with the algebra of Pauli matrices.

Let us make a few remarks. First, the existence of π -
phase zero modes in Kitaev systems has been reported in the
literature [29–31], but the crucial role of mirror symmetry
has rarely been highlighted. By breaking M̃x, accidental zero
modes can also appear at the junction, but not necessarily
when there is an exact π phase difference. To summarize,
the above discussion of π -phase MZMs has assumed: (i) the
total number of QDs N ∈ even; (ii) the mirror plane lies in
between QDs. We note that an analogous proof for N ∈ odd
is straightforward when choosing the mirror plane to coincide
with the location of the central QD. As a concrete example,
we analytically study a QD chain with N = 5 and further
enforce a π -phase junction at j = 3, as shown in Fig. 2(a).
Diagonalizing the QD Hamiltonian yields four zero-energy
modes in the energy spectrum [Fig. 2(b)], where two zero
modes are localized around the π junction and the other
two are end MZMs [Fig. 2(c)]. A further symmetry analysis
reveals that the π -phase zero modes carry a mirror index of
±1, respectively, just as we expect. A detailed discussion on
this N = 5 system can be found in the Supplemental Mate-
rial [32]. Finally, while disorder effects could be inevitable in
a real-world setup, we have numerically proved the resilience
of the π -phase junction MZMs against moderate quench dis-
orders that respect mirror symmetry on average [32]. Note that
similar topological robustness has also been reported in other
topological crystalline systems [33].
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FIG. 2. (a) Schematic plot of a five-QD π junction with a pair of
mirror-indexed MZMs. (b) BdG energy spectrum of the π junction
in (a) with the sweet-spot condition �/t = 1, where two edge MZMs
are shown in olive. The junction MZMs γ+ and γ− are shown in blue
and orange, respectively. The horizontal axis n labels states from the
lower energy to the higher. (c) Site-dependent local density of states
A(ω = 0, j) of the four MZMs in (b).

The poor man’s higher-order topology. The geometry of
the topological QD array can be quite flexible. For example,
we show in Fig. 1(b) that a pair of MZMs will also emerge
as corner excitations in an L-shaped junction with the two
legs differing by a π phase, as long as a leg-switching mirror
symmetry is well defined. When we assemble two identical
L-shaped π junctions into a square-shaped closed loop, as
shown in Figs. 1(c) and 1(d), we find two inequivalent sce-
narios of QD loops with two pairs of corner-localized MZMs
(dubbed phase A) and four corner-MZM pairs (dubbed phase
B), respectively.

This intriguing phenomenon is reminiscent of a 2D second-
order TSC, denoted as TSC2, whose boundary characteristics
are 0D corner-localized Majorana modes [34–45]. In general,
corners MZMs can be protected by either a bulk gap or an
edge gap. The latter case defines an extrinsic TSC2 with a
nontrivial edge-state topology, whose bulk state can be topol-
ogy free [46]. In contrast, an intrinsic TSC2 must have a
topological ground state in the bulk. Since a closed QD loop
always has a vacuum state in its interior, it is thus expected to
reproduce the key physics of an extrinsic TSC2 with a minimal
number of degrees of freedom. We dub this strategy the “poor
man’s approach” [20] for TSC2.

For phase A, the edge SC phase is given by �A =
(φ1, φ2, φ3, φ4) = (0, 0, π, π ), as shown in Fig. 1(d). We note
that the system respects a dihedral symmetry group D2, gener-
ated by mirror symmetries Md with Md (x, y) = (y, x) and Md̄
with Md̄ (x, y) = (−y,−x). Crucially, the phase structure �A

dictates [Md , �] = {Md̄ , �} = 0. The commutation relations
support one MZM pair at each Md -invariant corner, but not at
the Md̄ -respecting corners. Notably, the only D2-invariant way
to eliminate the corner MZMs is to simultaneously change the
topology of every Kitaev chain by closing the “edge” gap, a
manifestation of the extrinsic higher-order topology. We note

FIG. 3. (a) Energy spectrum of a D2-symmetric higher-order
TSC (Phase A), where four corner MZMs are found. (b) Energy
spectrum of a D4-symmetric higher-order TSC (Phase B) with eight
corner MZMs. N = 48 QDs are used in both real-space calculations.

that an extrinsic TSC2 does not often require any symmetry
protection. Nonetheless, breaking the mirror symmetries for
phase A will hybridize the MZM pair at the corresponding
corners, thus spoiling the second-order topology. Therefore,
phase A realizes a special class of D2-protected extrinsic
TSC2.

Meanwhile, the phase structure for phase B is �B =
(π, 0, π, 0) [Fig. 1(c)]. This geometry respects a D4 symme-
try group generated by a fourfold rotation C4 and Md . Notably,
both Md and Md̄ now commute with the PHS, so that both
Md and Md̄ -invariant corners can support MZM pairs. Such a
corner-mode configuration in Fig. 1(c) is also compatible with
C4. Phase B thus offers a poor man’s version of a D4-protected
extrinsic TSC2.

Figures 3(a) and 3(b) provide numerical simulations for
both phases A and B with a total number of QDs N = 48,
which confirms the above expectations. We have also chosen
different sets of model parameters, and still find the corner
MZMs to be extremely localized and robust. In particular, we
find that the MZM wavefunction with a positive mirror index
always peaks at the corner sites, while those with a negative
mirror index will peak off the corner sites.

Both extrinsic TSC2 phases described above share a Z2

classification. Namely, every mirror-respecting corner can
support either zero or one pair of MZMs, if the mirror com-
mutes with the PHS. For completeness, let us mention that an
intrinsic TSC2 with the same D2 or D4 symmetry is also Z2

classified, where a single MZM, rather than a MZM pair, will
show up at each mirror-respecting corner [47]. The intrinsic
and extrinsic TSC2 phases together constitute a Z2 × Z2 class.
This agrees with the fact that each mirror-invariant corner can
host zero or one MZM in either mirror subspace.

Kitaev vertices. We study a 2D geometry of QD arrays
where n Kitaev chains meet at a single vertex; here is dubbed
a “Kitaev n vertex.” Following the language of graph theory,
n ∈ Z+ is the vertex degree. Such vertex structure manifests
as an elementary building block for constructing complex
QD lattices, on which scalable Majorana braiding and fusion
operations can be implemented [48–52]. Earlier studies have
revealed the existence of zero-energy modes in certain Kitaev
vertices, while the topological origin of these zero modes
remains unclear [53]. As clarified below, in this paper we
show that the key to comprehending the vertex-bound zero
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FIG. 4. (a) A minimal D4-invariant 4-vertex with nine QDs. (b) The BdG energy spectrum shows eight zero modes, including four edge
MZMs (in olive), two vertex MZMs (in blue and orange), and two zero modes that constitute a MZD (in magenta). The horizontal axis n labels
states from the lower energy to the higher. (c) Real-space LDOS plots of the eight zero modes.

modes is the underlying crystalline symmetry of the vertex
geometry.

Let us start by labeling the edges of an n vertex by an
edge index α = 1, 2, ..., n, and an example for n = 4 is shown
in Fig. 1(f). Here we have assumed n > 2 as a 2-vertex is
essentially a linear junction structure discussed in the previous
section. Because each edge is a Kitaev chain, it will contribute
to an end MZM to the central node. As a result, the low-energy
physics of an n vertex will involve n edge MZMs, dubbed γα .
Without imposing any symmetry constraint, the MZMs at a
general vertex structure with an even n can always be paired
up and gapped out, while one vertex MZM will persist for
n = 3. Notably, the Kitaev chains or edges are directional.
When all edges are pointing outward or inward, the n vertex
respects a dihedral symmetry group Dn, and every energy
eigenstate must be labeled by an irreducible representation
(irrep) of Dn.

Let us first consider the rotation Cn, which permutes the
edge MZMs as

CnγαC−1
n = γα+1, with γn+1 ≡ γ1. (3)

Hence, {γα} form a regular representation of Cn. As a con-
sequence, the n energy eigenstates from {γα} must cover all
possible |Jz〉, where the z-component angular momentum Jz ∈
{0, 1, ..., n − 1} and Cn|Jz〉 = exp(i 2π

n Jz )|Jz〉. In the Majorana
representation, the PHS � = K is the complex conjugation
and the rotation matrix is simply a permutation matrix of
different MZMs, which leads to [Cn, �] = 0. Because the
PHS will flip the value of Jz, a |Jz〉 must be a MZM state if
Jz ≡ −Jz (mod n) [54]. It is then easy to show that when n
is even, an n vertex will have two vertex MZMs with Jz = 0
and n

2 . Otherwise, there will be one vertex MZM with Jz = 0.
Note that a similar mathematical structure of bound states
has been found in the superconducting vortex of Cn-protected
higher-order TSCs in 2D [55].

Meanwhile, the mirror symmetry M of Dn group can
merge two 1D irreps into one 2D irrep. This forces |Jz〉
and | − Jz〉 to be energetically degenerate, i.e., EJz = E−Jz .
This scenario happens when Jz �≡ −Jz (mod n), i.e., only
when |Jz〉 is not PHS invariant. On the other hand, | ± Jz〉
are PHS related, leading to EJz = −E−Jz . We then find that
EJz = E−Jz = 0. Therefore, | ± Jz〉 represents a class of Dn-
protected degenerate zero modes unveiled here that respect the
PHS as a whole [56]. We dub these modes a “Majorana zero
doublet” (MZD), to distinguish them from the conventional
nondegenerate MZMs. We have now arrived at the following
remarkable conclusions: (i) A Dn-symmetric n vertex always

has n zero modes, including both MZMs and MDPs; (ii)
Vertex MZMs and MDPs are classified by the 1D and 2D
irreps of Dn, respectively.

For example, a 4-vertex should host two MZMs (|Jz = 0〉
and |Jz = 2〉) and one MZD contributed by |Jz = 1, 3〉. In
total, there are four zero modes at the center of a 4-vertex
(Fig. 4). For a 3-vertex, there exists one MZM |Jz = 0〉 and
one MZD (|Jz = 1, 2〉) that are symmetry protected (see the
SM [32] for more details). We can similarly identify the
numbers of MZMs and MZDs for other n, and a summary
of results can be found in Table I. As a proof of concept,
we have also numerically calculated the BdG spectrum of the
minimal 4-vertex with nine QDs and found eight zero modes,
as shown in Figs. 4(a) and 4(b). By plotting their spatial profile
in Fig. 4(c), four zero modes (highlighted in yellow) are local-
ized at one site at the end of each edge, while Jz = 0, MZM
χ0 (colored in purple) sits at the vertex site. Notably, while
the Jz = 2, MZM χ1 = 1

2 (γB,2 − γB,7 + γA,4 − γA,8) (colored
in orange) and the MZD [χ2 = 1

2 (iγB,2 + γB,7 − iγA,4 − γA,8)
and χ3 = χ

†
2 ] (colored in pink) with Jz = 1, 3, share exactly

the same spatial location (see also the SM [32] for the detailed
calculations), they are completely decoupled from one another
thanks to the protection of D4 symmetry.

Conclusion. We have shown that junctions and vertices of
QD-based artificial Kitaev chains are natural generators of
multifold degenerate Majorana modes that carry crystalline
quantum numbers. As an elementary function component of
our architecture, the π junction, along with the associated
mirror-indexed MZMs, can be experimentally achieved by
applying a magnetic flux through a superconducting loop

TABLE I. Classification of vertex Majorana modes with and
without a Dn symmetry. NMZM and NMZD count the number of
vertex-bound MZM and MZD, respectively. Ntot denotes the total
number of vertex zero modes, including both MZMs and MZDs.

Symmetry Degree n (NMZM, NMZD) Ntot

3 (1,0) 1
None 4 (0,0) 0

5 (1,0) 1
6 (0,0) 0
3 (1,1) 3

Dn 4 (2,1) 4
5 (1,2) 5
6 (2,2) 6
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that connects the two hybrid segments of quantum-dots sys-
tems [57]. Structures of complex geometric patterns, such as
the poor man’s higher-order TSC phases and Kitaev vertices,
can be assembled by stacking multiple π junctions. Fine-
tuning the system to the sweet spot, a minimal geometry of
the proposed junction or vertex only requires a handful of
QDs, which are accessible with state-of-the-art device fabrica-
tion techniques. Meanwhile, signatures of junction and vertex
Majorana modes can be revealed in the local and nonlocal
tunneling conductance measurements [24,26]. Away from the
sweet spot, hybridizations among edge and junction/vertex
Majorana modes are expected to trigger intriguing signals that
are detectable with multiterminal nonlocal transport measure-
ments [58,59].

It is also straightforward to extend the construction
schemes of both TSC2 and highfold vertex bound states to 1D
topological chains in other symmetry classes. For example, a
vertex structure consisting of multiple Su-Schrieffer-Heeger
(SSH) chains in the class BDI would feature vertex zero
modes with both crystalline index and chiral-symmetry

indices. Artificial lattice systems such as cold-atom [60] or
photonic [61] platforms would be a feasible and tunable av-
enue to explore these phenomena in experiments.

The dihedral-symmetric Kitaev vertices further manifest
as a basic element for constructing general 2D networks of
connected Kitaev chains, i.e., a vertex lattice [62]. Since each
vertex is rich in Majorana degrees of freedom, turning on
intervertex interactions in a vertex lattice opens up a new
door for achieving various 2D symmetry-protected topolog-
ical (SPT) states [63], topological orders [64,65], fracton
phases [66], etc. We leave this intriguing directions for future
discussions.
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